Encoder, decoder, multiplexers and demultiplexers

3,893 views 39 slides Apr 19, 2020
Slide 1
Slide 1 of 39
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30
Slide 31
31
Slide 32
32
Slide 33
33
Slide 34
34
Slide 35
35
Slide 36
36
Slide 37
37
Slide 38
38
Slide 39
39

About This Presentation

https://pubgalarab.com/


Slide Content

Digital System Design
Multiplexers and Demultiplexers,
and
Encoders and Decoders

2
Multiplexers

3
Multiplexers
A multiplexer has
N control inputs
2
N
data inputs
1 output
A multiplexer routes (or connects) the selected
data input to the output.
The value of the control inputs determines
the data input that is selected.

4
Multiplexers
Z = A′.I
0+ A.I
1
Data
inputs
Control
input

5
Multiplexers
Z = A′.B'.I
0+ A'.B.I
1+ A.B'.I
2+ A.B.I
3
A B F
0 0 I
0
0 1 I
1
1 0 I
2
1 1 I
3
MSB LSB

6
Multiplexers
Z = A′.B'.C'.I
0+ A'.B'.C.I
1+ A'.B.C'.I
2+ A'.B.C.I
3+
A.B'.C'.I
0+ A.B'.C.I
1+ A'.B.C'.I
2+ A.B.C.I
3
MSB LSB
A B C F
0 0 0 I
0
0 0 1 I
1
0 1 0 I
2
0 1 1 I
3
1 0 0 I
4
1 0 1 I
5
1 1 0 I
6
1 1 1 I
7

Fall 2010 ECE 331 -Digital System Design 7
Multiplexers

8
Multiplexers
Exercise:
Design an 8-to-1 multiplexer using
4-to-1 and 2-to-1 multiplexers only.

9
Multiplexers
Exercise:
Design a 16-to-1 multiplexer using
4-to-1 multiplexers only.

Fall 2010 ECE 331 -Digital System Design 10
Multiplexer (Bus)

11
Demultiplexers

12
Demultiplexers
A demultiplexer has
N control inputs
1 data input
2
N
outputs
A demultiplexer routes (or connects) the data input to
the selected output.
The value of the control inputs determines the output
that is selected.
A demultiplexer performs the opposite function of a
multiplexer.

13
Demultiplexers
A B W X Y Z
0 0 I 0 0 0
0 1 0 I 0 0
1 0 0 0 I 0
1 1 0 0 0 I
W = A'.B'.I
X = A.B'.I
Y = A'.B.I
Z = A.B.I
Out
0
In
S
1S
0
I
W
X
Y
Z
AB
Out
1
Out
2
Out
3

14
Decoders

15
Decoders
A decoder has
N inputs
2
N
outputs
A decoder selects one of 2
N
outputs by
decoding the binary value on the N inputs.
The decoder generates all of the minterms of
the N input variables.
Exactly one output will be active for each
combination of the inputs.
What does “active” mean?

16
Decoders
A B W X Y Z
0 0 1 0 0 0
0 1 0 1 0 0
1 0 0 0 1 0
1 1 0 0 0 1
Active-high outputs
B
W
X
Y
Z
I
0
I
1A
Out
0
Out
1
Out
2
Out
3
W = A'.B'
X = A.B'
Y = A'.B
Z = A.Bmsb

Fall 2010 ECE 331 -Digital System Design 17
Decoders
A B W X Y Z
0 0 0 1 1 1
0 1 1 0 1 1
1 0 1 1 0 1
1 1 1 1 1 0
Active-low outputs
W = (A'.B')'
X = (A.B')'
Y = (A'.B)'
Z = (A.B)'msb
B
W
X
Y
Z
I
0
I
1A
Out
0
Out
1
Out
2
Out
3

18
Decoders
msb

19
Decoder with Enable
En A B W X Y Z
1 0 0 1 0 0 0
1 0 1 0 1 0 0
1 1 0 0 0 1 0
1 1 1 0 0 0 1
0 x x 0 0 0 0
enabled
disabled
high-level
enable
Enable
B
W
X
Y
Z
I
0
I
1A
Out
0
Out
1
Out
2
Out
3
En

20
Decoder with Enable
En A B W X Y Z
0 0 0 1 0 0 0
0 0 1 0 1 0 0
0 1 0 0 0 1 0
0 1 1 0 0 0 1
1 x x 0 0 0 0
enabled
disabled
Enable
B
W
X
Y
Z
I
0
I
1A
Out
0
Out
1
Out
2
Out
3
En
low-level
enable

21
Decoders
Exercise:
Design a 4-to-16 decoder using
2-to-4 decoders only.

22
Encoders

23
Encoders
An encoder has
2
N
inputs
N outputs
An encoder outputs the binary value of the selected
(or active) input.
An encoder performs the inverse operation of a
decoder.
Issues
What if more than one input is active?
What if no inputs are active?

24
Encoders
A B C D Y Z
0 0 0 1 0 0
0 0 1 0 0 1
0 1 0 0 1 0
1 0 0 0 1 1
D
Z
Y
I
0
I
1C
B I
2
I
3A
Out
0
Out
1

25
Priority Encoders
If more than one input is active, the higher-order
input has priority over the lower-order input.
The higher value is encoded on the output
A valid indicator, d, is included to indicate whether or
not the output is valid.
Output is invalid when no inputs are active
d = 0
Output is valid when at least one input is active
d = 1
Why is the valid indicator needed?

26
Priority Encoders
Valid bit
msb

27
Designing logic circuits using multiplexers

28
Using an n-inputMultiplexer
Use an n-input multiplexer to realize a logic circuit for
a function with nminterms.
m = 2
n
, where m = # of variables in the function
Each minterm of the function can be mapped to an
input of the multiplexer.
For each row in the truth table, for the function,
where the output is 1, set the corresponding input of
the multiplexer to 1.
That is, for each minterm in the minterm expansion of the
function, set the corresponding input of the multiplexer to 1.
Set the remaining inputs of the multiplexer to 0.

29
Using an n-inputMux
Example:
Using an 8-to-1 multiplexer, design a logic circuit
to realize the following Boolean function
F(A,B,C) = Sm(2, 3, 5, 6, 7)

30
Using an n-inputMux
Example:
Using an 8-to-1 multiplexer, design a logic circuit
to realize the following Boolean function
F(A,B,C) = Sm(1, 2, 4)

31
Using an (n / 2)-inputMultiplexer
Use an (n / 2)-input multiplexer to realize a logic
circuit for a function with nminterms.
m = 2
n
, where m = # of variables in the function
Group the rows of the truth table, for the function, into
(n / 2)pairs of rows.
Each pair of rows represents a product term of (m –1)
variables.
Each pair of rows can be mapped to a multiplexer input.
Determine the logical function of each pair of rows in
terms of the m
th
variable.
If the m
th
variable, for example, is x, then the possible
values are x, x', 0, and 1.

32
Using an (n / 2)-inputMux
Example: F(x,y,z) = Sm(1, 2, 6, 7)

33
Using an (n / 2)-inputMux
Example: F(A,B,C,D) = Sm(1,3,4,11,12–15)

34
Using an (n / 4)-inputMux
The design of a logic circuit using an (n / 2)-input
multiplexer can be easily extended to the use of
an (n / 4)-input multiplexer.

35
Designing logic circuits using decoders

36
Using an n-outputDecoder
Use an n-output decoder to realize a logic circuit for a
function with nminterms.
Each minterm of the function can be mapped to an
output of the decoder.
For each row in the truth table, for the function, where
the output is 1, sum (or “OR”) the corresponding
outputs of the decoder.
That is, for each minterm in the minterm expansion of the
function, OR the corresponding outputs of the decoder.
Leave remaining outputs of the decoder unconnected.

37
Using an n-outputDecoder
Example:
Using a 3-to-8 decoder, design a logic circuit to
realize the following Boolean function
F(A,B,C) = Sm(2, 3, 5, 6, 7)

38
Using an n-outputDecoder
Example:
Using two 2-to-4 decoders, design a logic circuit
to realize the following Boolean function
F(A,B,C) = Sm(0, 1, 4, 6, 7)

39
Questions?