aayushkumarsinghec22
351 views
178 slides
Mar 01, 2025
Slide 1 of 211
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
About This Presentation
dd
Size: 35.21 MB
Language: en
Added: Mar 01, 2025
Slides: 178 pages
Slide Content
Evolution of logic
complexity in Integrated
Circuit for information
technology services
By Prof. Hitesh Dholakiya
Engineering Funda
VLSI Lecture series
Outlines
❖Evolution in logic complexity in Integrated circuits
❖Evolution of size in Integrated services
❖Prominent Information Technology services
❖Features of Integrated circuits
Evolution in logic complexity in IC’s
MSI
•Medium Scale Integration
•Introduced in 1967
•Logic Block per chip 20-200
LSI
•Large Scale Integration
•Introduced in 1972
•Logic Block per chip 200-2000
VLSI
•Very Large Scale Integration
•Introduced in 1978
•Logic Block per chip 2000-20000
ULSI
•Ultra Large Scale Integration
•Introduced in 1989
•Logic Block per chip 20000 >>
Evolution of size in Integrated services
Minimum feature Size in (µm)
4.0 –
3.5 –
3.0 –
2.5 –
2.0 –
1.5 –
1.0 –
0.5 –
0.0 –
Year
1975 1980 1985 1990 1995 2000
4.0
0.1
Prominent Information Technology services
Year
1975 1980 1985 1990 1995 2000
Main Frame Computer Personal Computer Computer Network
Consumer Electronics Portable Computer
Data Communication Multi-media Application
Wireless/Cellular Data Communication
Speech Processing
Video on Demand
Features of Integrated circuits
❖Less area/volume
❖Less power consumption
❖Less testing requirement at system level
❖Higher reliability, mainly due to improved on chip interconnects
❖Higher speed, mainly due to reduced interconnection length
❖Significant cost savings
VLSI design
Methodologies
By Prof. Hitesh Dholakiya
Engineering Funda
VLSI Lecture series
Outlines
❖Design Time
❖Performance analysis versus design time
❖Technology window
Design Time of IC
❖Design Time of IC depends on follwing parameters
❑Design complexity
❑Performance level
❑Acceptablecost
Types of design - Full custom design requires all the
components to be designed and verified right from the
transistor level. This methodology is used for mass
production and to optimize area speed and power. Semi-
custom design are used when there is less time for
design and for less quantities. Most of the modules are
prebuilt and pretested.Additional components can be
integrated. This saves a design time but not that
optimized and cost-efficient for mass production.
Performance analysis versus design time
Circuit Performance
Design Time
Semi-custom Design
Full-custom Design
Less Opportunities
for performance
improvement
More Opportunities
for performance
improvement
Shorter design
time until
“maturity”
longer design time
until “maturity”
Technology Window
Circuit Performance
Time
Technology Window 1 Technology Window 2
Design DesignProduction Production
Semi Custom and Full
Custom design
By Prof. Hitesh Dholakiya
Engineering Funda
VLSI Lecture series
Full Custom DesignSemi Custom Design
1. Some commonly used design, layout, geometry and
placement of transistor is interfaced with given demand.
1. Complete design, layout, geometry, orientation and
placement of transistor is done designer
2. Design is completed with the use of multiple library.2. Entire design is made without use of any library.
3. Development time for design before maturity is less.3. Development time for design before maturity is more.
4. It has less opportunity for performance improvement4. It has more opportunity for performance improvement
5. Complete dependency on existing technology.5. Less dependency on existing technology.
6. Low cost6. High Cost
Performance analysis versus design time
Circuit Performance
Design Time
Semi-custom Design
Full-custom Design
Less Opportunities
for performance
improvement
More Opportunities
for performance
improvement
Shorter design
time until
“maturity”
longer design time
until “maturity”
Semi Custom
By Prof. Hitesh Dholakiya
Engineering Funda
VLSI Lecture series
Outlines
❖Basics of Semicustom design
❖Classification of Semicustom design
❖Working of Different Semicustom design
Basics of Semicustom design
❖Thismethodisusedtoreducetimetomarket.
❖Here,wereducecostofdesigningofproduct.
❖Performanceofsemicustomdesignislowerthenfullcustomdesign.
❖Here,insemicustomdesign,weusereadilyavailableblock,design,
libraryormodules.
Classification of Semicustom design
Semicustom Design
Standard Cell Gate array Programmable devices
Domains of VLSI Design Flow
❖ThedesigndescriptionforaVLSIcircuitmaybedescribedinformsof
threedomains:
1.BehavioralDomain
2.StructuralDomain
3.PhysicalDomain
Y Chart of VLSI Design
Behavior
Domain
Structural
Domain
Physical Domain
AlgorithmSystem
Chip Floor plan
Finite State
Machine
Register
Modules
placement
Module
Description
Logic Gate
Cell placement
Boolean
Equation
Transistor
Mask
Importance CAD tool
in VLSI design
By Prof. Hitesh Dholakiya
Engineering Funda
VLSI Lecture series
Outlines
❖Basics of CAD tool in VLSI design
❖IC design process
❖IC fabrication process
❖Important feature of CAD tools in VLSI design
Basics of CAD tools in VLSI design flow
❖AsperMoore’sLaw,complexityofIC’sisincreasingovertheyears.
❖DesigningofVLSIcircuitwithmillionsoftransistorinsingleICis
beyondhumansbrain.
❖TodesignVLSIcircuit,Computerisrequiredtochecklayout,circuit
performance,processetc.
❖Computerareusedtoaidinthedesignandoptimizationprocess.
❖VLSIdesignersarenormallygivenasetofdesignrulesbasedon
giventechnology.
IC design process and IC fabrication process
Design Entry
Design Verification,
DRC, Simulation etc.
Pattern Generator
Pattern file
Produce mask
For each layer wafer
processing, deposit,
expose, develop etch
etc.
Package
Test
Feature of VLSI CAD tools
❖VLSICADtoolshavefollowingtoolstomeetdesignfeatures:
1.Physicaldesign(Layout,editor,circuitschematics)
2.Physicalverification(DRC(designRuleCheck),circuitextractor,plotoutput,
visualchecking)
3.Behavioralverification.
Comparison of FPGA
and CPLD
By Prof. Hitesh Dholakiya
Engineering Funda
VLSI Lecture series
Comparison of FPGA and CPLD
FPGA CPLDParameters
1. Complex Programable Logic Design1. Field Programable Gate Array 1. Full Form
2. Based on “Logic Function”2. Based on “Look up table” 2. Architecture
3. Few blocks3. Around 100000 3. Blocks in Architecture
4. Course Grain Devices4. Fine Grain Devices 4. Architecture tuning
5. EPROM5. SRAM 5. Architectural Memory
6. Less6. High6. Complexity
7. Less 7. High7. Cost
8. Instant ON 8. It takes time to load program8. Time to ON
9. Program stays in CPLD9. Program lost once power is OFF9. Volatility of Program
10. Weaker Power Consumption10. Ideal Power Consumption10. Power Consumption
11. Easier to determine11. Complex to determine 11. Timing Analysis
On Chip Clock Generation
and Distribution
By Prof. Hitesh Dholakiya
Engineering Funda
VLSI Lecture series
Outlines
❖Basics of Clock in Digital Integrated circuits
❖Pierce Crystal oscillator
❖Generation of two non overlapping clocks
❖Y chart of VLSI Design flow
Basics of Clock in Digital Integrated Circuits
❖Clocksignalsaretheheartbeatsofdigitalsystems.So,stabilityof
clocksignalishighlyimportant.
❖Ideally,clocksignalshouldhaveminimumrisetime&falltime,it
shouldhavespecifieddutycyclesandzeroskew.
Rise Time Fall Time
Skew
Basics of Clock in Digital Integrated Circuits
❖Practically,thereisnoticeablerisetimeandfalltime,Dutycyclescan
alsovary.
❖Infact,asmuchas10%ofamachinecycletimeusexpandedto
allowrealisticclockskewsinlargecomputersystem.
❖Onchipgeneratedclockcanbeprocessdependentandunstable.
❖Asaresult,usuallyseparateclockchipwhichusecrystaloscillators
havebeenusedforhighperformanceVLSIchip.
Generation of two non overlapping clock
❖Productoftwononoverlappingclockiszeroatalltimes.
Ck
Ck-1
Ck-2
Comparison of FPGA,
CPLD, PLC,
Microprocessor,
Microcontroller & DSP
By Prof. Hitesh Dholakiya
Engineering Funda
VLSI Lecture series
FPGA CPLDParameters PLC MP MC DSP
Field
Programmable
Gate Array
Complex
Programmable
Logic Device
1. Full Form
Programmable
Logic Control
MicroprocessorMicrocontroller
Digital Signal
Processor
Look up table Logical Blocks2. Architecture
CPU, IO port,
Memory
CPU, IO Port
Von Neumann
Mostly
Harvard
architecture
Real Time
Applications
(Fine Tuning)
Course Tuning
Applications
3. Applications
In Industries, at
high power &
high Temp.
Computer
Applications
Consumer
Electronics like
Camera,
Automobile
Real Time
Applications
(Fine Tuning)
Fast for real
time
Slow4. Response Slow
Optimized for
speed only
Slow
Fast for real
time
Very Good Moderate5. Immunity with noise Highest
Needs
additional setup
Low Good
Not designed for
Multitasking
Single Task6. Task Single Task Multitasking
Not designed
for Multitasking
Not designed
for Multitasking
It takes time to
get ON
Less Time (In
terms of mili
Sec)
7. Turn ON time
Less Time (In
terms of Mili
Sec)
It takes time to
get ON
Less Time (In
terms of Micro
Sec)
Less Time (In
terms of Neno
Sec)
Expensive Cheap8. Cost Expensive Expensive Cheap Expensive
CMOS Fabrication
Process
By Prof. Hitesh Dholakiya
Engineering Funda
VLSI Lecture series
nMOSand pMOSstructure on P Type Substrate
Create n well or p well
region and channel
stop region
❖FornMOSandpMOS,specialregionmustbecreatedinwhich
semiconductortypeisoppositetothesubstratetype,theseregion
arecalledwellsortubs.
❖pwelliscreatedinntypesubstrateandnwelliscreatedinptype
substrate.
❖nMOStransistorarecreatedinptypesubstrateorpwellandpMOS
transistorarecreatedinntypesubstrateornwell.
❖Thatwellshouldbeofdefinedboundarytohavefixedchannelstop
region.
❖ThickOxideisgrowninactiveregionofnMOSandpMOS.
❖Thethingateoxideisgrownonthesurfacethroughthermal
oxidation.
❖Aspercircuitmakeapatternofpolysiliconlayer.
❖Afterthatcreaten+andp+regionsforsource,drainandsubstrate.
❖Finalmetallizationformetalinterconnects.
Grow field oxide (Thick
Oxide) and gate oxide
(Thin Oxide)
Deposit and pattern
polysilicon layer
Implant source, drain
region and substrate
contacts
Create contact
windows, deposit and
pattern metal layer
nMOSand pMOSon P Type Substrate
Twin Tube Fabrication
Process
By Prof. Hitesh Dholakiya
Engineering Funda
VLSI Lecture series
Basics of Twin tube fabrication process
❖Inourpreviousvideo,IhaveexplainednMOSandpMOSstructureonPTypeSubstrate.
❖Inthat,therecanbeissuesregarding,mutualcouplinginbetweennMOSandpMOS.
❖Therecanbemajorissuesregarding,LatchupforCMOSfabrication.
❖Toavoidthoseissues,weshouldfabricationnMOSandpMOSbytwintubefabrication
process.
❖LetususenTypesubstrate.
❖Theresistivityofsubstrateshouldbehigher.
❖Highertheresistivitylesserthecurrent
throughsubstrate.
n –Type Substrate
n –Type Substrate
Epitaxial Layer
❖Thenweshouldgrown+layerepitaxially.
❖Thatishavinglesserresistancecomparedto
substrate.
n –Type Substrate
Epitaxial Layer
SiO2 Layer
❖Afterthat,substrateissubjectedtooxidation
andwegrowSiO2layer.
n –Type Substrate
Epitaxial Layer
SiO2 Layer
❖SiO2layerisetchedusingmasking.
❖Twowindowsareformed,Oneforn-welland
anotherforp-well.
n –Type Substrate
Epitaxial Layer
SiO2 Layer
Photoresist mask
P+ diffusion
P well ❖1
st
windowiscoveredbyphotoresistmask.
❖Thenptypeimpuritiesdiffusedtoformp
well.
Photoresist mask
N+ diffusion
n –Type Substrate
Epitaxial Layer
SiO2 Layer
p well
❖2
nd
windowiscoveredbyphotoresistmask.
❖Thenntypeimpuritiesdiffusedtoformn
well.
n well
n –Type Substrate
Epitaxial Layer
SiO2 Layer
p welln well
❖GrowThinSiO2layerbythermaloxidation
forGateterminal
❖GrowPolysiliconlayerforphotolithography
andpatternmaking.
❖EachSiO2andPolysilicontoimplantDrain
andSource.
n –Type Substrate
Epitaxial Layer
SiO2 Layer
p welln well
n –Type Substrate
Epitaxial Layer
SiO2 Layer
p welln well
Photoresist mask
p+ diffusion
❖pwellcoveredwithphotoresistmaskandp+
diffusionisdonetoformsourceanddrain
region
p+ p+
n –Type Substrate
Epitaxial Layer
SiO2 Layer
p welln well
Photoresist mask
n+ diffusion
❖nwellcoveredwithphotoresistmaskandn+
diffusionisdonetoformsourceanddrain
region
p+ p+ n+ n+
n –Type Substrate
Epitaxial Layer
SiO2 Layer
p welln well
p+ p+ n+ n+
❖Metaldiffusionisdoneforcontact
formation.
❖Metaletchingisdone.
❖ContactformationsforsourceS,DrainDand
GateGisdone
S G D S G D
Two Terminal MOS
and it’s Energy band
diagram
By Prof. Hitesh Dholakiya
Engineering Funda
VLSI Lecture series
Outlines
❖Basics of MOS
❖Two terminal MOS structure
❖MOS substrate basic properties
❖Energy band diagram of p type substrate
❖Energy band diagram of MOS structure
❖Energy Band diagram of Combined MOS structure
Basics of MOS
❖FullformofMOSis‘MetalOxideSemiconductor’.
❖ComparedtoBJT,itoccupylessspace.Soitismoresuitablefor
integratedcircuits.
❖Atgateterminal,ifvoltageisapplied,itcreateschannelfor
conductioninbetweenDRAINandSOURCEterminal.
❖Conductionisonlydependsonmajoritycarrieronly.
Two Terminal MOS structure
P Type Si Substrate
Oxide SiO2
Metal
Gate G Terminal
??????
�Gate Voltage
Substrate Terminal
??????
�Substrate Voltage
❖ByAddingimpuritieslikeBORON
(Trivalent)inpuresemiconductor,
wemakePtypematerial.
❖SiO2layerisactinglikeadielectric
layer.Thatformscapacitorin
betweengateandsubstrate.
❖Thicknessisthereinorderof10nm
to50nm.
❖Externalvoltageisappliedin
betweengateandsubstrate
terminal,whichwilljustifycarrier
concentrationforchannel.
Energy Band diagram of P Type substrate
�
??????valance Band
�
??????Conduction
Band
Band gap 1.1eV
❖Thebandgapinbetweenconductionbandandvalance
bandis1.1eV.
�
??????Intrinsic Fermi
Level
�
�Fermi Level
�??????
�
❖Fermi potential ??????
�, is based on intrinsic Fermi Level �
??????
and Fermi level �
�
??????
�=
�
�−�
??????
�
❖Forptypesemiconductor,Fermipotentialcanbe
approximatedby
??????
��=
??????�
�
????????????
??????
??????
�
�
❖Forntypesemiconductor,Fermipotentialcanbe
approximatedby
??????
��=
??????�
�
????????????
�
�
??????
??????
Free Space
�??????
❖Electronaffinityis�??????,whichisenergygapinbetween
conductionbandandFreespace.
❖Energyrequiredtomoveelectronfromfermileveltofree
spaceisworkfunction�??????
�.
�??????
??????=�??????+(�
�−�
�)
Energy band diagram of MOS structure
Oxide
�
??????valance Band
�
??????Conduction Band
Band gap 8eV
�??????=�.??????�????????????
�
�Fermi Level
�??????
�=�.�????????????
Metal Al
�??????=�.��????????????
Semiconductor Si
Energy band Diagram of combined MOS structure
❖WhenwecombinedthethreeMOSmaterial,fermilevelmustlinedupin
singlelineandFreespacemustbecontinuous.
❖Becauseofworkfunctiondifferenceinbetweensemiconductorandmetal,
thereisvoltagedropacrossMOSandbandingofbands.
�
�Fermi Level
Semiconductor SiOxideMetal Al
�
??????Conduction Band
�
??????Intrinsic Level
�
??????Valance Band
Flat Band Voltage
and Example on Flat
Band Voltage
By Prof. Hitesh Dholakiya
Engineering Funda
VLSI Lecture series
Basics of Flat Band Voltage
❖IndividuallythereisadifferentworkfunctionwithMetal,SiO2and
Substrate.
❖Whenwecombinethreelayers,Becauseofworkfunctiondifference
betweenmetalandsemiconductor,voltagedropoccursacrossthe
MOSstructure.
❖PartofthisvoltageappearsacrossSiO2layerandrestacrossthe
siliconsurface.
❖Thisresultsintobandingofenergybands.
❖So,togetenergybandwithoutanybanding,voltagerequiredis
referredasflatbandvoltage
MOS under External
Bias
By Prof. Hitesh Dholakiya
Engineering Funda
VLSI Lecture series
Basics of External biasing to MOS
❖Here,weapplyexternalbiastoMOSbyGatevoltage??????
??????and
substratevoltage??????
??????.
❖Herewekeep,??????
??????=0(constant)and??????
??????ascontrollingvoltage.
❖Dependingonthepolarityandmagnitudeof??????
??????,MOSfunctionsin
threedifferentregions.
❑Accumulation
❑Depletion
❑Inversion
Condition 1 : ??????
�<??????and ??????
??????=??????Accumulation
P Type Si Substrate
Oxide SiO2
Metal
Gate G Terminal
??????
�Gate Voltage
Substrate Terminal
??????
??????Substrate Voltage
??????
�<??????
??????
??????=??????
Holes accumulated on the surface
�
???????????? �
????????????
❖Herecarrierconcentrationbecomeslargeronsurface,thisis
calledaccumulationofcarrieronthesurface.
❖Here,electronconcentrationgoesdeeperinsideduetonegative
potential
�
??????valance Band
�
??????Conduction
Band
�
??????Intrinsic Fermi
Level
�
�Fermi Level
OxideMetal Al Semiconductor Si
????????????
�
Condition 1 : ??????
�>??????(small) and ??????
??????=??????Depletion
P Type Si Substrate
Oxide SiO2
Metal
Gate G Terminal
??????
�Gate Voltage
Substrate Terminal
??????
??????Substrate Voltage
??????
�>??????
??????
??????=??????
�
???????????? �
????????????
❖Herecarrierconcentration(holes)willmovedeeplyinsidePtype
material,andthatformsdepletionregionneartosurfaceofoxidelayer.
�
??????valance Band
�
??????Conduction
Band
�
??????Intrinsic Fermi
Level
�
�Fermi Level
OxideMetal Al Semiconductor Si
????????????
�
Depletion Region
Condition 1 : ??????
�>??????(Large) and ??????
??????=??????Inversion
P Type Si Substrate
Oxide SiO2
Metal
Gate G Terminal
??????
�Gate Voltage
Substrate Terminal
??????
??????Substrate Voltage
??????
�>??????
??????
??????=??????
�
???????????? �
????????????
❖ForLargegatevoltage,electronswillmakelayeratsurfaceofoxide,whichis
oppositetoptypesubstrate,thatiscalledsurfaceinversion.
❖Belowelectrons,therewilldepletionlayer.
❖Aftersomevoltage,depletionlayerwillnotincreaseandelectronswill
increase.
�
??????valance Band
�
??????Conduction
Band
�
??????Intrinsic Fermi
Level
�
�Fermi Level
OxideMetal Al Semiconductor Si
????????????
�
Electrons
Depletion Region
Thickness of depletion
region, Depletion region
charge density and Surface
Inversion in MOS structure
By Prof. Hitesh Dholakiya
Engineering Funda
VLSI Lecture series
??????
�>??????(small) and ??????
�=??????Depletion region
P Type Si Substrate
Oxide SiO2
Metal
Gate G Terminal
??????
�Gate Voltage
Substrate Terminal
??????
�Substrate Voltage
??????
�>??????
??????
�=??????
�
???????????? �
????????????
❖Herewewillcalculatedepletion
width??????
??????asafunctionofsurface
potential??????
??????.
❖Mobileholechargeinathin
horizontallayerparalleltothe
surfaceis
Depletion Region
X
????????????=−????????????
�????????????
??????
??????
❖Thechangeinsurfacepotential
requiredtodisplacethincharge
dQbydistance??????
??????canbe
calculatedbyPoissonequation.
????????????=−??????.
????????????
??????
????????????
????????????=
????????????
�??????????????????
??????
????????????
❖Inintegration,dxvariesfrom0to
??????
??????andpotentialvariesfrom
Fermipotential??????
�tosurface
potential??????
??????.
∴න
??????�
????????????
????????????=න
??????
????????????????????????
�??????????????????
??????
????????????
∴??????
??????−??????
�=
????????????
�??????
??????
??????
????????????
????????????
❖Sodepthofdepletionregionis
∴??????
??????=
????????????
????????????(??????
??????−??????
�)
????????????
�
❖Sodepletionregionchargedensity
isgivenby
∴??????=−????????????
�??????
??????
∴??????=−??????????????????
�??????
????????????(??????
??????−??????
�)
❖Nowifwefurtherincreasethe
gatevoltagethenitwillstartto
createsurfaceinversionby
attractingelectrons.
??????
�>??????(Large) and ??????
�=??????Inversion Region
P Type Si Substrate
Oxide SiO2
Metal
Gate G Terminal
??????
�Gate Voltage
Substrate Terminal
??????
�Substrate Voltage
??????
�>??????
??????
�=??????
�
???????????? �
????????????
Electrons
Depletion Region
❖Whensurfaceinversiontakesplace,thedensityof
mobileelectronsonthesurfaceequalstothedensity
ofholesintheptype.
❖Conditionforthatisgivenby(??????
??????=−??????
�)
❖Nowifwefurtherincreasegatevoltage??????
�then
widthofdepletionregionwillnotincreasebutit
increasethenumberofelectrons.
❖Somaximumdepletionregiondepthcanbe
calculatedby
∴??????
????????????=
????????????
????????????(????????????
�)
????????????
�
❖Sothiscreationofinversionlayerbyexternally
appliedgatevoltageisusedforchannelcreationin
MOSFET,Whichisusedforcurrentconductionin
betweendrainandsource.
MOS Transistor
MOSFET
By Prof. Hitesh Dholakiya
Engineering Funda
VLSI Lecture series
Outlines
❖Basics of MOS Transistor
❖Types of MOS Transistor
❖Structure of n channel MOSFET
❖Working of n channel MOSFET
Basics of MOS Transistor
❖ItisMOSFET(MetalOxidSemiconductorFieldEffectTransistor)
❖Ithasfourterminals:Gate,Substrate,DrainandSource.
❖ThisdeviceisformedusingMOSstructure.
❖StructureofMOStransistorissymmetricaltodrainandsource
terminal.
Types of MOS Transistor
❖TherearetwotypesofMOStransistorbasedonchannel.
❑EnhancementtypeMOSTransistor:Ithasnoconductingchannel
regionatzerogatebiasvoltage.
❑DepletiontypeMOSTransistor:Ithasconductingchannelregion
atzerogatebiasvoltage.
Structure of n Channel MOSFET
P Type Si Substrate
Oxide SiO2
Metal
Gate G
Substrate
Source n+ Drain n+
Source S Drain D
Channel Length L
Working of n Channel MOSFET in cut off region
??????
??????�<??????
�??????
Depletion Region
Working of n Channel MOSFET cut off region
??????
??????�>??????
�??????
Depletion Region
Inversion Layer (Channel)
Working of n Channel MOSFET in Linear region
??????
??????�>??????
�??????
Depletion Region
Inversion Layer (Channel)
??????
??????small
Working of n Channel MOSFET threshold of
linear region
??????
??????�>??????
�??????
Depletion Region
Inversion Layer (Channel)
??????
??????=??????
??????�??????�
Pinch off Point
Working of n Channel MOSFET in saturation
region
??????
??????�>??????
�??????
Depletion Region
Inversion Layer (Channel)
??????
??????>??????
??????�??????�
Pinch off Point
Threshold Voltage of
MOSFET
By Prof. Hitesh Dholakiya
Engineering Funda
VLSI Lecture series
Outlines
❖Basics of Threshold Voltage of MOSFET
❖Parameters of Threshold Voltage of MOSFET
❖Derivation of Threshold Voltage of MOSFET
Basics of Threshold Voltage of MOSFET
❖Itisaminimumvoltage??????
????????????(GatetoSource)requiredtoform
inversionlayer(channel)inbetweensourceanddrain.
❖ThresholdvoltagedefinesoperationofMOSFET.
❖If??????
????????????islessthanthresholdvoltagethenMOSFETwillstayincutoff
region.
Parameters of Threshold Voltage in MOSFET
❖Therearefourphysicalparameterswhicheffectsthe
thresholdvoltageofMOSstructure:
❑Workfunctiondifferencebetweengateandthechannel.
❑Thegatevoltagecomponenttochangesurfacepotential.
❑Thegatevoltagecomponenttooffsetthedepletionregion
charge.
❑Thevoltagecomponenttooffsetthefixedchargesinthegate
oxideandinthesiliconoxideinterface.
Gradual Channel
Approximation, Drain
Current Equation &
MOSFET Characteristics
By Prof. Hitesh Dholakiya
Engineering Funda
VLSI Lecture series
Gradual Channel Approximation in MOSFET
�
??????�>�
�??????
Depletion Region
Inversion Layer (Channel)
�
��small
X
Y
Y=0 Y=L
Channel Length
Modulation of MOSFET
By Prof. Hitesh Dholakiya
Engineering Funda
VLSI Lecture series
Outlines
❖Basics of Channel Length Modulation
❖Channel length Modulation in MOSFET
❖Derivation of drain current for channel length modulation
❖Characteristics of MOSFET with channel length modulation
Channel Length Modulation in MOSFET
�
??????�>�
��
Depletion Region
Inversion Layer (Channel)
�
�small�
�=�
��??????�
Pinch Off Point
�
�>�
��??????�
Pinch Off Point
LL’
∆L
Substrate Bias Effect
in MOSFET
By Prof. Hitesh Dholakiya
Engineering Funda
VLSI Lecture series
Outlines
❖Basics of Substrate Bias Effect in MOSFET
❖Substrate Bias Effect with MOSFET characteristics
❖Threshold voltage under substrate bias voltage
❖Drain Current under substrate bias voltage
MOSFET
Capacitances
By Prof. Hitesh Dholakiya
Engineering Funda
VLSI Lecture series
Outlines
❖Basics of MOSFET Capacitances
❖Structural overview of MOSFET Capacitances
❖MOSFET capacitance Model
❖MOSFET Capacitances in different regions of MOSFET
Basic Architecture of BIST
Test
Test Controller
Hardware
Pattern
generator
MUX
Normal
Input
CUT
(Circuit Under Test)
Output
Response
Compactor
Signature
ROM
Reference
Signature
Comparator
Good/Faulty
Issues of BIST designing
❖howmanyfaultstobecovered
❖howmuchchipareaoccupiedbyBIST
❖TestTime
❖Flexibilitybysoftwareandhardware
Advantages of BIST
❖Itlowerstestingcost
❖Testingisindependentonfuturetechnology
❖betterfaultcoverage
❖shortertesttime
❖Easiercustomersupport
Disadvantages of BIST
❖Additionalcircuit(Siliconarea)forBISTtestinginIC
❖AdditionalPinrequiredforBISTtestinginIC
❖Onchiptestingmaygetfailedthenhowtotestit.
Resistive Load
Inverter
By Prof. Hitesh Dholakiya
Engineering Funda
VLSI Lecture series
Outlines
❖Circuit of resistive load inverter
❖Working of resistive load inverter
❖Voltage transfer characteristics of resistive load inverter
❖Parameters of resistive load inverter
Circuit of Resistive load Inverter
�
��=�
��
R
�
��
�
���=�
��
Average DC Power consumption
❖Power consumption is voltage into current.
❖Here duty cycle is 50%, so voltage = ൗ
??????????????????
2
❖Here current =
??????????????????−??????????????????
??????
❖So average DC power dissipation is given by
∴�
��(????????????�??????????????????�)=
�
��
�
×
�
��−�
�??????
�
Ion Implantation
and it’s Advantage
over Diffusion
By Prof. Hitesh Dholakiya
Engineering Funda
VLSI Lecture series
Ion Implantation
❖It is alternative to diffusion process in IC fabrication.
❖Diffusion Process is done at high temperature, but Ion implantation
is done at low temperature.
❖In Ion Implantation, high energy dopant ions are accelerated, so that
ions can easily penetrate the Si wafer.
❖The depth of penetration can be increased by increasing accelerating
voltage.
Faults in Integrated
Circuit
By Prof. Hitesh Dholakiya
Engineering Funda
VLSI Lecture series
Outlines
❖Basics of Faults
❖Types of Faults
❑Permanent fault
❑Non Permanent fault
Basics of Faults in IC
❖ItleadstoimproperoutputofIC.
❖ItmaygivefalseoutputinICorItmayreducespeedofIC.
❖TherearebasicallytwotypesoffaultsinIC
❑PermanentFault
❑NonPermanentFault
Stuck at Fault
By Prof. Hitesh Dholakiya
Engineering Funda
VLSI Lecture series
Stuck at fault
❖Anyterminalmaystuckatlogic‘0’orLogic‘1’isreferredasstuckat
fault.
❖Atthatterminal,ithasnodependencyonI/PandO/P.
❖Examples
❑Stuckatlogic‘1’
❑Stuckatlogic‘0’
A
B
Y
Stuck at ‘1’
A B Correct YActual Y
0 0 0 0
0 1 0 1
1 0 0 0
1 1 1 1
A
B
Y
Stuck at ‘0’
A B Correct YActual Y
0 0 0 0
0 1 0 0
1 0 0 0
1 1 1 0