EPR spectroscopy.

masreshaamare 33,189 views 34 slides May 14, 2015
Slide 1
Slide 1 of 34
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30
Slide 31
31
Slide 32
32
Slide 33
33
Slide 34
34

About This Presentation

No description available for this slideshow.


Slide Content

EPR
Electron Paramagnetic Resonance Spectroscopic(EPR).
by : Masresha Amare
PhD candidate in AAU.
1EPR

Outline
Introduction
Principle of EPR
The Zeeman effect
The Hyperfine EffectThe Hyperfine Effect
Super-hyperfine splitting
2EPR

Introduction
ElectronSpinResonanceSpectroscopy
AlsocalledEPRSpectroscopy
ElectronParamagneticResonanceSpectroscopy
Non-destructivetechnique
3EPR

What compounds can you analyze?
Applicableforspecieswithoneormoreunpairedelectrons
Freeradicals
Transitionmetalcompounds
Usefulforunstableparamagneticcompoundsgeneratedin
situsitu
Electrochemicaloxidationorreduction
4EPR

Energy of Transitions
ESRmeasuresthetransitionbetweentheelectron
spinenergylevels
Transitioninducedbytheappropriatefrequency
radiationradiation
Requiredfrequencyofradiationdependentupon
strengthofmagneticfield
Commonfieldstrength0.34and1.24T
9.5and35GHz
Microwaveregion
5EPR

Energy of Transitions
Theabsorptionofenergycausesatransitionofan
electronfromalowerenergystatetoahigherenergy
state.
InEPRspectroscopytheradiationusedisintheInEPRspectroscopytheradiationusedisinthe
gigahertzrange.
Unlikemosttraditionalspectroscopytechniques,in
EPRspectroscopythefrequencyoftheradiationis
heldconstantwhilethemagneticfieldisvariedin
ordertoobtainanabsorptionspectrum.
6EPR

How does the spectrometer work?
7EPR

How does the spectrometer work?
Theradiationsourceusuallyusediscalledaklystron
Theyarehighpowermicrowavesourceswhichhave
low-noisecharacteristicsandthusgivehigh
sensitivity
AmajorityofEPRspectrometersoperateat
approximately9.5GHz,whichcorrespondstoabout
32mm(X-band)
Theradiationmaybeincidentonthesample
continuouslyorpulsed
8EPR

How does the spectrometer work?
Thesampleisplacedinaresonantcavitywhich
admitsmicrowavesthroughaniris.
Thecavityislocatedinthemiddleofan
electromagnetandhelpstoamplifytheweaksignals
fromthesample.fromthesample.
Numeroustypesofsolid-statediodesaresensitiveto
microwaveenergy
Absorptionlinesaredetectedwhentheseparationof
theenergylevelsisequaltotheenergyofthe
incidentmicrowave.
9EPR

What causes the energy levels?
Resulting energy levels of an electron in a magnetic
field
10EPR

What causes the energy levels?
Whenanelectronisplacedwithinanapplied
magneticfield,B
o,thetwopossiblespinstatesofthe
electronhavedifferentenergies(Zeemaneffect)
Thelowerenergystateoccurswhenthemagnetic
momentoftheelectronisalignedwiththemagneticmomentoftheelectronisalignedwiththemagnetic
field.
Thetwostatesarelabeledbytheprojectionofthe
electronspin,M
S,onthedirectionofthemagnetic
field,whereM
S=-1/2isparallelandM
S=+1/2isanti
parallelstate
11EPR

Describing the energy levels
Baseduponthespinofanelectronanditsassociated
magneticmoment
Foramoleculewithoneunpairedelectron
Inthepresenceofamagneticfield,thetwo
electronspinenergylevelsareelectronspinenergylevelsare
E=g
BB
0M
S
g=proportionalityfactor
B=Bohrmagneton
M
S=electronspin B
0=Magneticfield
quantumnumber
(+½or-½)
12EPR

The Zeeman Effect
EPRspectroscopyareduetotheinteractionofunpairedelectronsin
thesamplewithamagneticfieldproducedbytheexternalmagnetfield
B
0.ThiseffectiscalledtheZeemanEffect.
the energies for an electron with ms = +½ and ms = -½ are
E
1/2 = 1/2geB
0 E
1/2 = -1/2geB
0
13EPR

The Zeeman Effect
14EPR

Proportionality Factor
Measured from the center
of the signal
For a free electron
2.00232
For organic radicalsFor organic radicals
Typically close to free-
electron value
1.99-2.01
For transition metal compounds
Large variations due to spin-orbit coupling and zero-
field splitting
1.4-3.0
15EPR

Spectra
To get finer informaon ∂A/∂H is ploed
against H to get the first derivative curve.
When phase-sensitive detection is used, the
signal is the first derivative of the absorption signal is the first derivative of the absorption
intensity
EPR 16

Hyperfine Interactions
EPR signal is ‘split’ by neighboring nuclei
Called hyperfine interactions
Can be used to provide informationCan be used to provide information
Number and identity of nuclei
Distance from unpaired electron
Interactions with neighboring nuclei
E = gm
BB
0M
S+ aM
sm
I
a = hyperfine coupling constant
m
I= nuclear spin quantum number
17EPR

Which nuclei will interact?
Every isotope of every element has a ground
state nuclear spin quantum number, I
has value of n/2, nis an integer
Isotopes with even atomic number and even
mass number have I= 0,and have no EPR spectramass number have I= 0,and have no EPR spectra

12
C,
28
Si,
56
Fe, …
Isotopes with odd atomic number and even mass
number have neven

2
H,
10
B,
14
N, …
Isotopes with odd mass number have nodd

1
H,
13
C,
19
F,
55
Mn, …
18EPR

Hyperfine Interaction
Interaction with a single nucleus of spin ½
19EPR

Hyperfine Interactions
Coupling patterns same as in NMR
More common to see coupling to nuclei with
spins greater than ½
The number of lines:The number of lines:
2NI+ 1
N= number of equivalent nuclei
I= spin
Only determines the number of lines--not the
intensities
20EPR

Hyperfine Interactions
Relative intensities determined by the number
of interacting nuclei
If only one nucleus interacting
All lines have equal intensityAll lines have equal intensity
If multiple nuclei interacting
Distributions derived based upon spin
For spin ½ (most common), intensities follow
binomial distribution
21EPR

Relative Intensities for I=1/2
N Relative Intensities
0 1
1 1 : 1
2 1 : 2 : 12 1 : 2 : 1
3 1 : 3 : 3 : 1
4 1 : 4 : 6 : 4 : 1
5 1 : 5 : 10 : 10 : 5 : 1
6 1 : 6 : 15 : 20 : 15 : 6 : 1
22EPR

Relative Intensities for I= ½
23EPR

Relative Intensities for I= 1
Example:
VO(acac)
2
Interaction with vanadium nucleus
For vanadium, I= 7/2For vanadium, I= 7/2
So
2NI+ 1 = 2(1)(7/2) + 1 = 8
You would expect to see 8 lines of equal intensity
24EPR

Intensities
EPR spectrum of vanadylacetylacetonate
25EPR

Hyperfine Interactions
Example:
Radical anion of benzene [C
6H
6]
-
Electron is delocalized over all six carbon atoms
•Exhibits coupling to six equivalent hydrogen atoms•Exhibits coupling to six equivalent hydrogen atoms
So
2NI+ 1 = 2(6)(1/2) + 1 = 7
So spectrum should be seven lines with relative
intensities 1:6:15:20:15:6:1
26EPR

Hyperfine Interactions
EPR spectrum of benzene radical anion
27EPR

Superhyperfinesplitting
If the odd, unpaired electron spends time around
multiple sets of equivalent nuclei, additional
splitting is observed: 2nI + 1; this is called
“superhyperfinesplitting.”
ESR spectrum of CH
2OH Radical
H.Fischeretal.
28EPR

superhyperfinesplitting
Example:
Pyrazineanion
Electron delocalized over ring
•Exhibits coupling to two equivalent N (I= 1)
2NI+ 1 = 2(2)(1) + 1 = 5
•Then couples to four equivalent H (I= ½)
2NI+ 1 = 2(4)(1/2) + 1 = 5
So spectrum should be a quintet with intensities
1:2:3:2:1 and each of those lines should be split
into quintets with intensities 1:4:6:4:1
29EPR

superhyperfinesplitting
EPR spectrum of pyrazine radical anion
30EPR

superhyperfinesplitting
ESR Spectrum of (CF
3)
2NO
Chem.Soc88: 371 (1966)
ESR Spectrum of tetra-azanaphthaleneanion
Chem.acta. 48:112 (1965)
31EPR

superhyperfinesplitting
ESR spectrum of the cyclopentadienylradical
Chem.Phys.42.3931(1965)
32EPR

Conclusions
Analysis of paramagnetic compounds
Compliment to NMR
Examination of hyperfine interactions
Provides information on number and type of Provides information on number and type of
nuclei coupled to the electrons
Indicates the extent to which the unpaired
electrons are delocalized
EPR 33

THANK YOUTHANK YOU
EPR 34
Tags