Equation of a Circle in standard and general form

AraceliLynPalomillo 2,616 views 41 slides Jan 21, 2022
Slide 1
Slide 1 of 41
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30
Slide 31
31
Slide 32
32
Slide 33
33
Slide 34
34
Slide 35
35
Slide 36
36
Slide 37
37
Slide 38
38
Slide 39
39
Slide 40
40
Slide 41
41

About This Presentation

Writing an equation of a circle in standard or general form and finding the radius and the center of a circle given an equation.


Slide Content

WELCOME 10-Burgos 10-Dagohoy 10-Del Pilar

QUARTER 2 WEEK 8

OBJECTIVES

Illustrate the center-radius form of the equation of a circle.

Determine the center and radius of a circle given its equation and vice versa.

Look Back to your Lesson.... Look Back to your Lesson....

Look Back to your Lesson.... ( x 1 , y 1 ) = (1, 1) ( x 2 , y 2 ) = (5, 2)         FORMULA  

Equation of a Circle in Standard Form or Center-Radius Form

center (0,0) P (x,y)   AP = r (0,0)

        Lyn On Me   A( x 1 , y 1 )= (0, 0) P(x 2 , y 2 ) = (x, y)

Equation of a Circle in Center - Radius Form  

Example : What is the equation of the circle with center at the origin and radius of length 8?   center = (0,0) radius = 8 units      

Equation of a Circle with Center ( h,k ) and Radius r

center (h,k) (x,y)   radius r

      Lyn On Me ( x 1 , y 1 ) = ( x 2 , y 2 ) = (h, k) (x, y)

Equation of a Circle in Standard Form with Center ( h,k ) and radius r  

Find the equation of a circle, in standard form, whose center is (–1, –1), and radius of 4 units. Example ( -1,-1 ) 4

r = 4 units (x – h) 2 + (y – k) 2 = r 2 [x – ( -1 )] 2 + [y – ( -1 )] 2 = 4 2 (x + 1) 2 + (y + 1) 2 = 4 2 (x + 1) 2 + (y + 1) 2 = 16 Given: C(h, k) = (–1, –1)

Equation of a Circle in General Form

         

  =           +  

Equation of a Circle in General Form +  

Equation of a Circle in General Form a. Standard form b. Square the binomial d. Simplify c. Transpose

Example Write the equation of a circle, in general form, with coordinates of the center at (-2, 1) and radius 6.

                 

        +  

Determine the center and radius of the circle given an equation .

Example 1: Determine the center and radius of the circle given by the equation x 2 + y 2 = 24.

Given: x 2 + y 2 = 24 x 2 + y 2 = r 2 center : (0,0) radius = 2 units   r 2 = 24 =   r =   =   x 2 + y 2 = 24 (0,0) 2  

Example 2 : Determine the center and radius of the circle given by the equation (x - 3) 2 + (y + 2) 2 = 49.

Given: (x – 3) 2 + (y + 2) 2 = 49 ? (x – h ) 2 + (y – k ) 2 = r 2 (x – 3 ) 2 + center (3, –2) radius = 7 units. [ y -(-2 )] 2 = 7 2 (y + 2) 2 49

Example 3 : Determine the center and the radius of the circle given by the equation (x + 1) 2 + y 2 = 64.

Given: (x + 1) 2 + y 2 = 64 ( x – h ) 2 + ( y - k ) 2 = r 2 [ x - ( -1 ) 2 + (y - ) 2 = 8 2 center : (-1,0) radius = 8 units

Example 4 : Determine the center and the radius of the circle given by the equation x 2 + y 2 – 6x – 135 = 0.

x 2 + y 2 – 6x – 135 = 0 x 2 + y 2 – 6x – 135 + 135 = 0 + 135 x 2 + y 2 – 6x = 135 (x 2 – 6x ) + y 2 = 135 (x 2 – 6x + 9 ) + y 2 = 135 + 9 (x – 3) 2 + y 2 = 144

( x – h ) 2 + ( y – k ) 2 = r 2 ( x – 3 ) 2 + ( y – 0 ) 2 = 12 2 center : (3,0) (x – 3) 2 + y 2 = 144 radius = 12 units

Example 5: Determine the equation of the circle whose diameter has its endpoints at P 1 (6, 2) and P 2 (4, 10).

1. Find the midpoint of the diameter to find the center of the circle. P 1 ( 6, 2 ) and P 2 ( 4, 10 )          

2. Determine the length of the radius r. C(5, 6) and P 2 (4, 10)               r r

(x – h) 2 + (y – k) 2 = r 2 ( x – 5 ) 2 + ( y – 6 ) 2 = ) 2 ( x – 5 ) 2 + ( y – 6 ) 2 = 17   3. Substitute the values of C(h,k)=(5,6) and the value of r =   (x-5) 2 + (y-5) 2 =17

Lyn On Me SUBSCRIBE LIKE SHARE