ERI Technical Presentation.pdf

nskfeb 1,091 views 123 slides Aug 29, 2022
Slide 1
Slide 1 of 123
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30
Slide 31
31
Slide 32
32
Slide 33
33
Slide 34
34
Slide 35
35
Slide 36
36
Slide 37
37
Slide 38
38
Slide 39
39
Slide 40
40
Slide 41
41
Slide 42
42
Slide 43
43
Slide 44
44
Slide 45
45
Slide 46
46
Slide 47
47
Slide 48
48
Slide 49
49
Slide 50
50
Slide 51
51
Slide 52
52
Slide 53
53
Slide 54
54
Slide 55
55
Slide 56
56
Slide 57
57
Slide 58
58
Slide 59
59
Slide 60
60
Slide 61
61
Slide 62
62
Slide 63
63
Slide 64
64
Slide 65
65
Slide 66
66
Slide 67
67
Slide 68
68
Slide 69
69
Slide 70
70
Slide 71
71
Slide 72
72
Slide 73
73
Slide 74
74
Slide 75
75
Slide 76
76
Slide 77
77
Slide 78
78
Slide 79
79
Slide 80
80
Slide 81
81
Slide 82
82
Slide 83
83
Slide 84
84
Slide 85
85
Slide 86
86
Slide 87
87
Slide 88
88
Slide 89
89
Slide 90
90
Slide 91
91
Slide 92
92
Slide 93
93
Slide 94
94
Slide 95
95
Slide 96
96
Slide 97
97
Slide 98
98
Slide 99
99
Slide 100
100
Slide 101
101
Slide 102
102
Slide 103
103
Slide 104
104
Slide 105
105
Slide 106
106
Slide 107
107
Slide 108
108
Slide 109
109
Slide 110
110
Slide 111
111
Slide 112
112
Slide 113
113
Slide 114
114
Slide 115
115
Slide 116
116
Slide 117
117
Slide 118
118
Slide 119
119
Slide 120
120
Slide 121
121
Slide 122
122
Slide 123
123

About This Presentation

swro


Slide Content

1 NOT FOR DISTRIBUTION © Copyright 2010, ERI VERSION:0005-00 July 2010
Making Desalination Affordable

High Efficiency, Energy Recovery Solution
Technical Seminar
高效率的能量回收解决方案


SHANGHAI

JUNE 2011

2 NOT FOR DISTRIBUTION © Copyright 2010, ERI VERSION:0005-00 July 2010
Agenda
Desalination Systems
The Pressure Exchanger
Centrifugal Pumps & ERD Solutions
Energy Recovery Inc
High Efficiency Integrated Power Solution
SWRO Engineering Design
Process Simulator
Desalination Plants with PX Technology

3 NOT FOR DISTRIBUTION © Copyright 2010, ERI VERSION:0005-00 July 2010
Energy Recovery Inc
HEADQUARTERS/CERAMICS
San Leandro (San Francisco),
California USA
REGIONAL OFFICES
Spain, China, UAE
ENERGY RECOVERY NB
New Boston, Michigan
USA

4 NOT FOR DISTRIBUTION © Copyright 2010, ERI VERSION:0005-00 July 2010
Company Profile 公司简介
Background
公司背景
•Established in 1992, Headquarters in California
公司成立于 1992年,总部位于美国加州
•More than 10,000 Energy Recovery Devices Installed/Contracted
全球已经销售和安装了过一万多个PX
®
•Global Sales and Technical Presence
全球销售和技术支持网络
•Saving more than 890 MW of Energy
节省890 MW 功率能量
•More than 180 OEMs
180多个OEMs使用过PX
®

Technical
Expertise
技术专家
•Highest Efficiency, Durability and Reliability
高效、耐用和可靠
•24/7 Service and Support
全方位、全天候 服务和技术支持
•Precision Manufacturing and Ceramics Expertise
精密的制造及加工技 术,陶瓷专家
•Technical Review, On-site Commissioning, Start-up
技术审核、现场调试和启动
•Isobaric and Turbine Energy Recovery Solutions
提供等压式和透平式能量回收解决方案
•ERI Acquires Pump Engineering in 2009
ERI在2009年成功收购PEI

5 NOT FOR DISTRIBUTION © Copyright 2010, ERI VERSION:0005-00 July 2010
Over 180 Clients

6 NOT FOR DISTRIBUTION © Copyright 2010, ERI VERSION:0005-00 July 2010
Capital
Expense
投资成本
43%
Operating
Expense
操作成本
57%
Desalination Plant Capital & Operating Costs
ASSUMPTIONS 基准
Power Cost 电费USD/kWh 0.09
Debt Equity Ratio 债权比 80/20
Debt Interest Rate 利率 8%
Equity Return on Inv 投资回报率 18%

7 NOT FOR DISTRIBUTION © Copyright 2010, ERI VERSION:0005-00 July 2010
Chemical /
Consumables
化学消耗品
9%
Power
电能
41%
Parts
Replacement
备品备件
13%
Operating
Margin
运营利润
17%
Office 办公费用 3%
Membranes
膜更换费用
8%
Labor, G&A
劳动力
9%
Operating Expenses— Breakdown 操作成本分 项
Perth Seawater
Desalination Plant
2008

8 NOT FOR DISTRIBUTION © Copyright 2010, ERI VERSION:0005-00 July 2010
Source: Affordable Desalination Collaboration, 2008
Power Use — Breakdown (Seawater RO)电力消耗成本分 项
Pre-filtration
预处理系统8%
Permeate Treatment
后处理系统1%
Permeate Distribution
产品水输送系统7%
Reverse
Osmosis Process
反渗透68%
Intake
取水15%
RO power consumption is approximately 20%
(up to 45%) of total SWRO cost
反渗透系统电力消耗大 约占总的操作成本的 20-45%

9 NOT FOR DISTRIBUTION © Copyright 2010, ERI VERSION:0005-00 July 2010
Making Desalination Affordable

Desalination Systems

10 NOT FOR DISTRIBUTION © Copyright 2010, ERI VERSION:0005-00 July 2010
Issues: high pumping costs, wasted energy, lack of optimization
问题:高压泵高投资、能量的浪 费和无法优化
MEMBRANES
HIGH
PRESSURE
PUMP
Seawater RO: Before Energy Recovery Devices

11 NOT FOR DISTRIBUTION © Copyright 2010, ERI VERSION:0005-00 July 2010
11
Seawater RO: Pelton Wheel/Francis Turbine Energy Recovery Devices

12 NOT FOR DISTRIBUTION © Copyright 2010, ERI VERSION:0005-00 July 2010
TURBOCHARGER
MEMBRANES
900 PSI (62 bar)
5 PSI (.35 bar)
200 GPM (45.5 m3/h)
300 GPM (68.1 m3/h)
5 PSI (.35 bar)
300 GPM (68.1 m3/h)
595 PSI (41 bar)
500 GPM (113.6 m3/h)
920 PSI
(63.4 bar)
500 GPM
(113.6 m3/h)
30 PSI (2 bar)

500 GPM (113.6 m3/h)
HERO PUMP HIGH PRESSURE PUMP
Seawater RO: TurboCharger Energy Recovery Devices

13 NOT FOR DISTRIBUTION © Copyright 2010, ERI VERSION:0005-00 July 2010
Seawater RO: Positive Displacement Energy Recovery Devices
Smaller pump, high constant efficiency, flexible operation
较小尺寸的高 压泵、恒定的高效率和灵活的操作性能
95 – 98% efficiency
MEMBRANES
HIGH
PRESSURE
PUMP
PX-260
DEVICE
CIRCULATION
PUMP

14 NOT FOR DISTRIBUTION © Copyright 2010, ERI VERSION:0005-00 July 2010
Constant High Efficiency
Isobaric Energy Recovery Systems Have High Efficiency
Regardless of System Size
无论系统大小等压式能量回收装置具有恒定的高效率
Increasing Flow
100
80
60
40
20
Efficiency %

Isobaric
Turbocharger
Pelton Turbine

15 NOT FOR DISTRIBUTION © Copyright 2010, ERI VERSION:0005-00 July 2010
Desalination Systems
Pelton Turbine
Turbocharger
Piston Exchanger
Francis Turbine
Dyprex
Rotary Exchanger
1980 1990 2000 2010

16 NOT FOR DISTRIBUTION © Copyright 2010, ERI VERSION:0005-00 July 2010
No ERD
Francis Turbine
Pelton Wheel
Isobaric Device
kWh
/
m
3

0
1
2
3
4
5
6
7
8
1980 2000 2009
Jeddah I
Las Palmas
Trinidad
Perth
Energy Recovery — Driving Down the Cost of Desalination
Advances in Membrane and Pump Technologies have also enabled these improvements
先进的泵和膜技术进一步降低了能耗

17 NOT FOR DISTRIBUTION © Copyright 2010, ERI VERSION:0005-00 July 2010

The PX Pressure Exchanger™ Device
An Isobaric Energy Recovery Solution

18 NOT FOR DISTRIBUTION © Copyright 2010, ERI VERSION:0005-00 July 2010
Energy Recovery Inc
HEADQUARTERS/CERAMICS
San Leandro (San Francisco),
California USA
•Global Headquarters – Executive Staff, Engineering/R&D, Sales,
Support & Marketing 公司总部-管理部 门、研发、销售、技术支持和市 场
•Top-notch ceramics manufacturing facility 超级陶瓷生产工厂
•PX manufacturing and testing facility PX生产和测试工厂
•PX School training seminar PX培训学校

SLIDE 19
NOT FOR DISTRIBUTION
© Copyright 2011, ERI
Version 005-01-11
State-of-the-Art, Materials Science Manufacturing
Creating advanced ceramics components requires
specialized equipment, a fully equipped materials lab,
engineers, and optimized processes
采用专门的设备生产的先进的陶瓷组件,完善的 组装材料实验室和
最优化的加工工 艺

SLIDE 20
NOT FOR DISTRIBUTION
© Copyright 2011, ERI
Version 005-01-11
Special Features of PX Device Ceramics PX陶瓷的特性
•Made of specialty formulated high purity
Aluminum Oxide 采用特殊的高品 质的氧化铝制备而成
•Ceramics are strong, withstand high pressures, and
are biologically inert 坚硬的陶瓷可以承受高 压和防止生物的
侵蚀
•Will not leach chemicals into water that may hurt
membranes 不会将化学品加入水中而危害反 渗透膜
•Unaffected by strong acids, oxidizers, and
seawater 不会受到 强酸、氧化剂和海水的影响
•Material is extremely hard, therefore it resists wear,
cavitation and abrasion damage 材料超级坚硬,可以避
免磨损、气蚀等危害
•Dimensionally stable to enable manufacturing high
precision, low friction, process lubricated bearings
高精确的尺寸和 稳定的制作可以 获得低的摩擦和工 艺中的水力 润

SLIDE 21
NOT FOR DISTRIBUTION
© Copyright 2011, ERI
Version 005-01-11
ERI Ceramic Process Flow Diagram

22 NOT FOR DISTRIBUTION © Copyright 2010, ERI VERSION:0005-00 July 2010
The PX Device
•2 high pressure connections
•2 low pressure connections
•Ceramic cartridge
End cover rotor / sleeve end cover

23 NOT FOR DISTRIBUTION © Copyright 2010, ERI VERSION:0005-00 July 2010
Low-pressure feed water
fills rotor chamber,
displacing brine
Rotor chamber seals,
containing low-pressure
feed water
High-pressure brine
pressurizes and displaces
feedwater
Rotor chamber seals,
containing high pressure
brine
The PX Device at Work
1 2
3
4

24 NOT FOR DISTRIBUTION © Copyright 2010, ERI VERSION:0005-00 July 2010
The PX Device
View from Inside Pressure Vessel

SLIDE 25
NOT FOR DISTRIBUTION
© Copyright 2011, ERI
Version 005-01-11
Product Product Model

65-Series
PX-180
PX-220
PX-260


Quadribaric
Technology™
PX-300


4S-Series
PX-30S
PX-45S
PX-70S
PX-90S
PX-140S


Circulation
Pumps

Isobaric Technology: California Facility

26 NOT FOR DISTRIBUTION © Copyright 2010, ERI VERSION:0005-00 July 2010
Specification PX300 unit
Flow range 300-200 gpm
Technology
4 pressure exchanger per
rotation
Volumetric mixing 5%
Efficiency Up to 98%
Materials
Wet material: AL6XN or
equivalent
Temperature range 1-40 C (Not freeze)
Max operational
pressure
1200 psi
Housing Side port design
PX 300 unit

27 NOT FOR DISTRIBUTION © Copyright 2010, ERI VERSION:0005-00 July 2010
Specification PX260 unit PX300 unit
Flow range
260-180 gpm
Range: 80 gpm
300-200 gpm
Range: 100 gpm
Technology
2 Pressure
exchanger per
rotation
4 pressure exchanger
per rotation
Volumetric
mixing
6% 5%
Installation End port design Side port design
PX300 unit vs PX260 unit

28 NOT FOR DISTRIBUTION © Copyright 2010, ERI VERSION:0005-00 July 2010
Energy Recovery Device – PX Technology Advantages
• Best-in-class Performance 高等级性能
−Highest efficiency- up to 98%
高达98%的高效率
−Constant: flat efficiency curve 效率恒定
• Rotor 转子
−One moving part 单一运转部件
−Hydrodynamic bearing 水力润滑轴承
−Automatic speed adjustment自动速度调

• State-of-the Art Materials尖端材料
−Ceramics 陶瓷
−Extremely durable material (3X steel
hardness) 极其耐用材料,是 钢硬度的3倍
−Never corrodes 绝不腐蚀
−No fatigue 无疲劳损伤

29 NOT FOR DISTRIBUTION © Copyright 2010, ERI VERSION:0005-00 July 2010
• Scalability and Reliability 可靠及方便 扩容
−Modular–like membranes同膜一样、模块化设计理念
−Fail-safe redundancy:
no down-time故障自我保 护冗余,无需停机
−Installed in any orientation仸意方向安装
• Ease of Installation易于安装
−Minimal footprint占地面积最小
−No extra civil works无额外的土建要求
−No electrical connections无电气连接
−Lightweight重量轻
• Smooth Start up and Operation启动平滑和操作 稳定
−Flexibility-recovery, flow controls机动性强、流量可调节
−Vibration-free (no pistons)无活塞、无震 颤
−Maintenance-free 免维护
Energy Recovery Device – PX Technology Advantages

30 NOT FOR DISTRIBUTION © Copyright 2010, ERI VERSION:0005-00 July 2010
Making Desalination Affordable

SWRO Engineering Design

31 NOT FOR DISTRIBUTION © Copyright 2010, ERI VERSION:0005-00 July 2010
Flow Control—Low Pressure
SWRO Engineering Design
LP flow rate set by discharge flow control valve
低压侧流量由PX出口低压排放阀控制
MEMBRANES
HIGH
PRESSURE
PUMP
PX-260
DEVICE
CIRCULATION
PUMP

32 NOT FOR DISTRIBUTION © Copyright 2010, ERI VERSION:0005-00 July 2010
SWRO Engineering Design
Flow Control—High Pressure
HP flow rate set by booster pump
高压侧流量由PX循环泵控制
MEMBRANES
HIGH
PRESSURE
PUMP
PX-260
DEVICE
CIRCULATION
PUMP

33 NOT FOR DISTRIBUTION © Copyright 2010, ERI VERSION:0005-00 July 2010
SWRO Engineering Design
Flow Control—Permeate
Permeate flow rate set by high pressure pump and membranes
产水侧流量由高 压泵和膜的特性控制和决定
MEMBRANES
HIGH
PRESSURE
PUMP
PX-260
DEVICE
CIRCULATION
PUMP

34 NOT FOR DISTRIBUTION © Copyright 2010, ERI VERSION:0005-00 July 2010
SWRO Engineering Design
PX Flow Control 流量控制
MEMBRANES
HIGH
PRESSURE
PUMP
PX-260
DEVICE
CIRCULATION
PUMP
•The PX works like two parallel pipes. PX工作就像两个平行的管道
•High-pressure flow rate controlled by booster pump 循环泵控制高压侧流量
•Low-pressure flow rate controlled by discharge valve 排放阀控制低压侧流量
•High-pressure pump flow is permeate flow 高压泵控制产水侧流量
•All three main flows are independent 这三个流量相互独立
•HP and LP flows must both be metered and controlled
高、低压侧流量都必须测量和控制

35 NOT FOR DISTRIBUTION © Copyright 2010, ERI VERSION:0005-00 July 2010
SWRO Engineering Design
Pressure Control 压力控制
MEMBRANES
HIGH
PRESSURE
PUMP
PX-260
DEVICE
CIRCULATION
PUMP
•LP valve does not directly affect membrane pressure
低压排放阀门不直接影响膜的进水和浓水压力
•System pressure determined by membrane condition, feed temperature
and feed salinity 系统压力由膜的特性、进水温度和含盐量等因数决定
•Supply pressure changes cause LP flow rate changes
供水压力变化会引起低压侧流量变化
•PX LP out pressure must be above minimum
低压出口排放压力必须高于最小排放压力

36 NOT FOR DISTRIBUTION © Copyright 2010, ERI VERSION:0005-00 July 2010
SWRO Engineering Design
•Membrane water recovery = I / F
•System water recovery = I / A
•Membrane recovery = system recovery
if PX LP flow = PX HP flow
Water Recovery
MEMBRANES
HIGH
PRESSURE
PUMP
PX-260
DEVICE
CIRCULATION
PUMP
PERMEATE

37 NOT FOR DISTRIBUTION © Copyright 2010, ERI VERSION:0005-00 July 2010
SWRO Engineering Design
PX Lubrication – High Pressure Flow Through Hydrodynamic Bearing
Lubrication flow rate dictated by system pressure
and temperature and PX seals
润滑流量是 PX的特性,由系 统压力、温度以及 PX自身结构决定
MEMBRANES
HIGH
PRESSURE
PUMP
PX-260
DEVICE
CIRCULATION
PUMP

38 NOT FOR DISTRIBUTION © Copyright 2010, ERI VERSION:0005-00 July 2010
SWRO Engineering Design
•The PX technology always
stays on its design curves
PX总在它的设计曲线上运行
•PX unit manifolds – same as
membrane manifolds
PX母岐管就像膜的母歧管
•Design manifold for
low pressure drop
母歧管设计尽量减少压损 D IFFER EN TIAL PR ESSU R E
5
10
15
170 180 190 200 210 220 230
Flow R ate (gpm)
Pres s ure (ps i )
H P D P
LP D P
PX
1
PX
2
PX
3
PX
1
PX
2
PX
3
Z flow U flow
PX Device Arrays – Even Flow Distribution
Manifold Entrance
Velocities for Good
Flow Distribution
总管进水俩素土建设计导则
<7 ft/s (2.1 m/s) <12 ft/s (3.7 m/s)
Z flow U flow

39 NOT FOR DISTRIBUTION © Copyright 2010, ERI VERSION:0005-00 July 2010
SWRO Engineering Design
Mixing Effects– Lead Flow or ―Overflush‖
MEMBRANES
HIGH
PRESSURE
PUMP
PX-260
DEVICE
CIRCULATION
PUMP

40 NOT FOR DISTRIBUTION © Copyright 2010, ERI VERSION:0005-00 July 2010
SWRO Engineering Design
•Feed water salinity increase进水含盐量 @ 40% recovery = 2.5%
•Operating pressure increase 操作压力增加= 1.3 bar
•Operator Options:操作选择
−Accept pressure increase 接受压力增加(= 2°C feed temp
decrease)相当于降低 2度水温
−Decrease recovery by 2%或降低2%系统回收率
−Increase low-pressure supply to the PX by 5%或向PX增加5%
的低压供水流量
Mixing
混合 0.00
1.00
2.00
3.00
4.00
5.00
6.00
7.00
- 15.00 - 10.00 - 5.00 0.00 5.00 10.00 15.00 20.00
Le a d F l o w ( %)= (( LP f low in ) – 1 ) * 100
HP f lo w ou t
Sa l i n i t y I n c re a s e ( %) =
( Conduc tiv ity at PX HP( out) ) - ( Conduc tiv ity at PX LP( in) )
( Conduc tiv ity at PX LP( in) )
Paper presented at EDS Marrakech
Caramondani 40,000 m
3
/ D SWRO Plant

41 NOT FOR DISTRIBUTION © Copyright 2010, ERI VERSION:0005-00 July 2010
•HP and LP flows are independent
•高、低压侧流量相互独立
•Good flow control: stay within limits of PX unit
•最佳流量控制:高、低 压流量始终控制在PX允许的流量范 围
•Constant PX device feedwater pressure
•恒定的PX原水供应压力
•Get the air out
•彻底排气
•Equal flow to all PX units in arrays
•PX单元均一流量分布
•Lowering recovery usually improves SWRO performance
•系统低回收率可以改善 SWRO性能
SWRO Engineering Design
Engineering Design Summary工程设计汇总

42 NOT FOR DISTRIBUTION © Copyright 2010, ERI VERSION:0005-00 July 2010
Making Desalination Affordable

PX™ Technology Desalination
Plants

43 NOT FOR DISTRIBUTION © Copyright 2010, ERI VERSION:0005-00 July 2010
Tianjin Dagang SWRO Plant – Largest SWRO in China
•100,000 m
3
/day (26 MGD), Largest
SWRO plant operating in China

•Source is the Bo Sea, Tianjin
Dagang is located in Tianjin City

•Started up May 2009.

•Product used for industrial
processing

SLIDE 44
NOT FOR DISTRIBUTION
© Copyright 2011, ERI
Version 005-01-11
Qingdao SWRO Plant
•100,000 m
3
/day (26 MGD)

•6 TRAINS x 17-PX260

•Municipal use

•Start-up Date: Q4 2011

SLIDE 45
NOT FOR DISTRIBUTION
© Copyright 2011, ERI
Version 005-01-11
YuHuan Power Station – 2
nd
Largest SWRO in China

•Located in Zheijang Province, source is the
East China Sea

•34,560 m
3
/day (9.1MGD)
−1 x 76,800 m
3
/day (20MGD) UF pretreatment
system
−6 x 5,760 m
3
/day (1.5MGD) SWRO trains
−3 x 3,120 m
3
/day (0.8MGD) BWRO trains

•March 2006 start-up, designed and built by
Beijing CNC Technologies

•Power/SWRO plant built for
2008 Olympics

46 NOT FOR DISTRIBUTION © Copyright 2010, ERI VERSION:0005-00 July 2010
Perth, Australia — 140,000 m
3
/day (36.9 MGD)
•GWI Award 2007
Environmental Contribution of the Year

SLIDE 47
NOT FOR DISTRIBUTION
© Copyright 2011, ERI
Version 005-01-11
Hadera, Israel: 465,000 m3/day
•World’s Largest SWRO Plant in Operation
•16 Trains of PX-220 devices

48 NOT FOR DISTRIBUTION © Copyright 2010, ERI VERSION:0005-00 July 2010
Hamma, Algeria — 200,000 m
3
/ day (53 MGD)
•Largest membrane trains in the world
•25,000 m
3
/ day

49 NOT FOR DISTRIBUTION © Copyright 2010, ERI VERSION:0005-00 July 2010
Al Shoaibah (Saudi Arabia) — 150,000 m
3
/ day (40 MGD)

50 NOT FOR DISTRIBUTION © Copyright 2010, ERI VERSION:0005-00 July 2010
Barcelona (Spain) 200,000 m
3
/ day (53 MGD)

51 NOT FOR DISTRIBUTION © Copyright 2010, ERI VERSION:0005-00 July 2010
570 m
3
/ day
MV Pacific Star
Sun Cruise Ship
(Australia)
6,000 m
3
/ day

Sharm El-Sheikh
(Egypt)
16,000 m
3
/ day
La Marina Cope
(Spain)
Small to Medium Installations

52 NOT FOR DISTRIBUTION © Copyright 2010, ERI VERSION:0005-00 July 2010
6 year MPD History - 36 Mega Projects Contracted 1Perth, Australia DEGREMONT 140,000 m
3
/d37 MGD 2
2Hamma, Algeria GE 200,000 m
3
/d53 MGD340K
3Skikda, Algeria GEIDA 100,000 m
3
/d26 MGD 4
4Alicante II, Spain INIMA 65,000 m
3
/d17 MGD
5Cartagena, Spain COBRA | TEDAGUA 63,000 m
3
/d16 MGD
6Beni Saf, Algeria GEIDA 200,000 m
3
/d53 MGD428K
7Chennai Minjur, India BEFESA 100,000 m
3
/d26 MGD 6
8Shuibah III, Saudi Arabia DOOSAN 150,000 m
3
/d40 MGD
9Torrevieja, Spain ACCIONA 240,000 m
3
/d63 MGD
10Barcelona, Spain DEGREMONT 200,000 m
3
/d53 MGD
11Swakopmund, Namibia KEYPLAN 65,000 m
3
/d17 MGD
12Hamriyah, UAE AQUA ENG 90,000 m
3
/d24 MGD845K
13Tianjin, China HYFLUX 100,000 m
3
/d26 MGD 9
14Tlemcen Hounaine, Algeria GEIDA 200,000 m
3
/d53 MGD
15Tlemcen Souk Tleta, Algeria HYFLUX 200,000 m
3
/d53 MGD
16Fouka, Algeria ACCIONA 120,000 m
3
/d32 MGD
17Larnaca, Cyprus IDE 60,000 m
3
/d16 MGD
18Shuwaikh, Kuwait DOOSAN 140,000 m
3
/d37 MGD
19Tordera, Spain ACCIONA | AQUALIA 60,000 m
3
/d16 MGD
20Bajo Almanzora, Spain BEFESA | AQUALIA 65,000 m
3
/d17 MGD
21Hadera, Israel IDE 388,000 m
3
/d102 MGD1333K
22Mostaganem, Algeria INIMA | AQUALIA 200,000 m
3
/d53 MGD 10
23Cape Preston, Australia IDE 140,000 m
3
/d37 MGD
24Paraguana, Venezuela ACCIONA 75,000 m
3
/d20 MGD
25Cap Djinet, Algeria INIMA | AQUALIA 100,000 m
3
/d26 MGD
26Palmachim Expansion, Israel VIAMARIS 137,000 m
3
/d36 MGD
27Hadera Expansion, Israel IDE | H&C 74,000 m
3
/d20 MGD
28Adelaide Port Stanvac, Australia ACCIONA 150,000 m
3
/d40 MGD
29Perth 2 - Bunningup, Australia VALORIZA | SADYT 137,000 m
3
/d36 MGD
30Tenes, Algeria BEFESA 200,000 m
3
/d53 MGD
31Magtaa, Algeria ** HYFLUX 500,000 m
3
/d132 MGD1713K
32Adelaide Expansion, Australia ACCIONA 150,000 m
3
/d40 MGD 5
33Melbourne - Wonthaggi, Australia DEGREMONT 411,000 m
3
/d109 MGD
34Moncofa, Spain INIMA 60,000 m
3
/d16 MGD
35Oropesa, Spain * TECNICAS REUNIDAS 50,000 m
3
/d13 MGD
36Qingdao, China BEFESA 100,000 m
3
/d26 MGD771K
* PX-300s -- ** AT-7200s 5.4 M m
3
/d1434 MGDTotals
2010
2005
2006
2007
2008
2009

53 NOT FOR DISTRIBUTION © Copyright 2010, ERI VERSION:0005-00 July 2010
ERI PX Technology Mega Projects
• 31/35 Mega Projects
• 900 MW of Energy Savings
• 6 Billion Liters of water – enough for every person on the planet
Alicante
Cartagena
Torrevieja
Barcelona
Tordera
Bajo Almanzora
Paraguana
Hamma
Skikda
Beni Saf
Tlemcen H
Tlemcen ST
Mostaganem
Fouka
Oued Sebt
Cap Djinet
Tenes
Swakopmund
Chennai
Hamriyah
Shoaibah
Shuwaikh
Tianjin
Hadera
Larnaca
Palmachim
Perth
Cape Preston
Adelaide

54 NOT FOR DISTRIBUTION © Copyright 2010, ERI VERSION:0005-00 July 2010
Summary
•Energy is the largest operating cost of SWRO
•SWRO系统中能耗是最大的操作成本
•Most developments in SWRO address energy issues
•SWRO发展的制约因素是能耗
•SWRO energy improved > 60% in 20 years
•最近20年SWRO能量消耗已 经提高了超过60%
•Energy Recovery technologies cut energy costs by up to 60%
•能量回收技 术小姐能耗高达 60%
•Approx. 97% efficient energy recovery in isobaric configurations – flexibility
•灵活的等 压式能量回收装置效率 约97%
•Small additional reductions in energy consumption are feasible
•额外的小幅能耗消减是可行的
•Additional energy cuts may be offset by capital cost increases
(for example, lower recovery)
•投资的增加可以通 过能耗的消减来弥 补,例如,较低回收率

55 NOT FOR DISTRIBUTION © Copyright 2010, ERI VERSION:0005-00 July 2010
Centrifugal Pumps
&
TurboCharger ERD Solutions

56 NOT FOR DISTRIBUTION © Copyright 2010, ERI VERSION:0005-00 July 2010
Energy Recovery Inc
ENERGY RECOVERY INC
NEW BOSTON
New Boston, Michigan
USA
•Centrifugal Manufacturing Headquarters – Pumps and TurboChargers
离心式水 泵和涡轮增压装置的生 产基地
•Top-notch manufacturing facility 先进的制造工厂
•Pump/TurboCharger manufacturing and testing facility
水泵和涡轮增压装置的生产及测试基地
•3,000 HP Test Stand 3,000马力测试平台

57 NOT FOR DISTRIBUTION © Copyright 2010, ERI VERSION:0005-00 July 2010
Core Competences
Engineering
•CFD Analysis
& Simulation
•Custom
Design
•Extensive
R&D
•MSU Turbo
Machine Lab
•PWR Co-op
Machining
•Large VTL
•CNC Lathes
•5 Axis CNC
•Grinding
•Honing
•Dynamic
Balancing
Assembly
•Prep & Polish
•QC
•Torque
control
•CMM Analysis
Testing
•Full Power
Performance
Testing
•Efficiency
Validation
•Hydrostatic
test
•Performance
baseline

58 CONFIDENTIAL 58 CONFIDENTIAL

Customer
Requirements
Agile
Engineering
CNC
Programming
Machining of
Hydraulic
Passages
Performance
Test
Quality
Control
Shipment
Agile Engineering

59 NOT FOR DISTRIBUTION © Copyright 2010, ERI VERSION:0005-00 July 2010
59

60 NOT FOR DISTRIBUTION © Copyright 2010, ERI VERSION:0005-00 July 2010
Manufacturing Capability Expansion

61 NOT FOR DISTRIBUTION © Copyright 2010, ERI
LPT
AquaSpire
HTC AT HALO
ERI (Centrifugal Technology) Products
Energy Recovery Devices
•Advanced Technology TC (HTC AT)
超技术型涡轮能量回收装置( HTC AT)
•Low Investment Turbocharger (HALO)
经济型涡轮能量回收装置( HALO)
•Low Pressure Turbocharger (LPT)
低压型涡轮能量回收装置( LPT)
Pumps
•AquaBold High Pressure RO
Pumps 离心式反渗透多级高压泵
•AquaSpire Single-stage Pump
单级泵
AquaBold

62 NOT FOR DISTRIBUTION © Copyright 2010, ERI VERSION:0005-00 July 2010
AquaBold Pump Line

63 NOT FOR DISTRIBUTION © Copyright 2010, ERI VERSION:0005-00 July 2010
High-Efficiency Centrifugal High Pressure RO Pump
高效率的离心式 RO系统高压泵
•Uniquely designed for desalination applications
为海水淡化系 统独特设计的产品
–Custom designs for specific operating conditions allows for optimum pump
efficiencies 根据实际的操作工况定制的独特 结构,可以达到最佳的 泵效率
•Quality materials & manufacturing 优质材料和制造
−Designed for 20 year service life 20年设计使用寿命
•Designed for use with PX energy recovery devices
和PX能量回收装置配合 设计使用
−Highest efficiency package solution with guaranteed power consumption
最高效率的能量解决方案保 证了能耗指 标
For certain sizes & upon request 对于确认的尺寸和 较高的要求
•Available with short lead-times 可以保证的较短的交货期
•Customer service, training and support 客户服务、培训和支持
−Highly qualified technical field services and training programs
高质量的技术现场服务和培训
AquaBold Pump Overview

64 NOT FOR DISTRIBUTION © Copyright 2010, ERI VERSION:0005-00 July 2010
AquaBold Pump Advantages
•Industry-leading high efficiencies
行业领先---高效率
−Performance-enhanced fluid modeling
流动模型的建立可以提高性能
−Proprietary thrust technology eliminates
losses 专利的止推 轴承技术减少了损耗
•State-of-the-art construction for RO
industry RO行业最有魅力的 产品
−Precision machined investment-cast
components 精密的机械投 资---浇铸部件
−Standard Duplex 2205 标准的2205双相不锈钢
−Super Duplex 2507 optional
超级双相不锈钢2507可作为选择
•Simple to maintain 简单的维护
−No disassembly required for mechanical seal
replacement 无需拆装要求的机械密封更 换
−All product-lubricated bearings
所有的轴承都是产品自身润滑
−Thrust bearing can be replaced without
removing pump or motor
无需移动电机和水泵就可以自由地拆装止推 轴承

65 NOT FOR DISTRIBUTION © Copyright 2010, ERI VERSION:0005-00 July 2010
AquaBold Pump - Features

66 NOT FOR DISTRIBUTION © Copyright 2010, ERI VERSION:0005-00 July 2010
AquaBold Pump (Cross Section)

67 NOT FOR DISTRIBUTION © Copyright 2010, ERI VERSION:0005-00 July 2010
Proprietary Thrust Bearing
•Product lubricated bearings – eliminates
maintenance of grease bearings and
auxiliary oil systems and associated seals
润滑轴承---免去油脂 轴承和辅助油系统及其相关密
封的维护
•Simple, efficient design – allows field retrofits
without the need for bearing change
简单、高效的设计---在无需改变轴承的情况下在 现
场可以翻新改造
•Reduced friction provides lower power
losses within the bearing system, improving
overall efficiency
在轴承系统理减少的摩擦可提供 较低的能量 损失,
提高整体效率
•Eliminates need for costly external thrust
bearing system
无需外部昂 贵的止推轴承系统

68 NOT FOR DISTRIBUTION © Copyright 2010, ERI VERSION:0005-00 July 2010
AquaBold Pump Line (Current Products)
50
55
60
65
70
75
80
85
90
0 200 400 600 800 1000 1200 1400 1600
Efficiency (%)

Q (gpm)
AquaBold High Pressure Pump
4x6x9-C
4x6x9-B
3x4x7-C
3x4x7-A
2x3x5-C
2x3x5-B
2x3x5-A
3x4x7-B
4x6x9-A

69 NOT FOR DISTRIBUTION © Copyright 2010, ERI VERSION:0005-00 July 2010
AquaSpire Pump

70 NOT FOR DISTRIBUTION © Copyright 2010, ERI VERSION:0005-00 July 2010
AquaSpire Pump
Application 应用范围
•Single-stage high pressure pump for medium to large scale SWRO
systems 适用于大中型海水淡化系 统的单级高压泵
Advantages 优势
•Achievable efficiencies up to 90+% 最高效率可达到 90%以上
•BEP always matches customer duty point 最佳效率点通常能匹配客 户的需要
•Removable volute inserts 可移动更换式蜗壳
−Allows rerate to match changes in system conditions
允许为了配合系 统的工况改变而再次修正
−Customized Hydraulic Design for each specific application
对于每一个特殊的 应用窦可以进行量身定做的水力模型 设计
−Customized 3-D geometry Impellers
量身定做的三 维叶轮设计
•No scheduled maintenance 无需周期性 维护
•Single-stage design 单级设计

71 NOT FOR DISTRIBUTION © Copyright 2010, ERI VERSION:0005-00 July 2010
AquaSpire ½ AT =
AquaSpire Pump

72 NOT FOR DISTRIBUTION © Copyright 2010, ERI VERSION:0005-00 July 2010
AquaSpire Pump Con’d
THRUST BEARING
CENTER BEARING
PUMP
IMPELLER
PUMP
VOLUTE
SHAFT

73 NOT FOR DISTRIBUTION © Copyright 2010, ERI VERSION:0005-00 July 2010
AquaSpire Pump (exploded)
Pump
Volute
Pump
Diffuser

74 NOT FOR DISTRIBUTION © Copyright 2010, ERI VERSION:0005-00 July 2010
TurboCharger General Theory

75 NOT FOR DISTRIBUTION © Copyright 2010, ERI VERSION:0005-00 July 2010
SWRO Engineering Design – Single Stage
TURBOCHARGER
MEMBRANES
900 PSI (62 bar)
5 PSI (.35 bar)
200 GPM (45.5 m3/h)
300 GPM (68.1 m3/h)
5 PSI (.35 bar)
300 GPM (68.1 m3/h)
595 PSI (41 bar)
500 GPM (113.6 m3/h)
920 PSI
(63.4 bar)
500 GPM
(113.6 m3/h)
30 PSI (2 bar)

500 GPM (113.6 m3/h)
HP PUMP
•The Turbocharger uses brine energy to boost
the full feed stream to the RO, thereby
reducing the required boost from the high
pressure pump
涡轮式能量回收装置主要是利用反 渗透浓水的能量 给
进入反渗透装置的原水 进行增压以达到降低高 压泵的
扬程,起到节能的作用

76 NOT FOR DISTRIBUTION © Copyright 2010, ERI VERSION:0005-00 July 2010
LPT Process Design
1ST STAGE MEMBRANES
LPT TURBO CHARGER
2ND STAGE MEMBRANES
250 PSI
(17.24 bar)
2000 GPM
(454.2 m3/h)
30 PSI (2 bar)

2000 GPM (454.2 m3/h)
HIGH PRESSURE PUMP
5 PSI (.35 bar)
1000 GPM (227.1 m3/h)
5 PSI (.35 bar)
1500 GPM (340.7 m3/h)
5 PSI (.35 bar)
500 GPM (113.6 m3/h)
5 PSI (.35 bar)
500 GPM (113.6 m3/h)
311 PSI (21.44 bar)
326 PSI
(22.48bar)
1000 GPM
(227.1 m3/h)
230 PSI (15.86 bar)
1000 GPM (227.1 m3/h)
500 GPM (113.6 m3/h)
• Inter-stage pressure boosting: LPT

77 NOT FOR DISTRIBUTION © Copyright 2010, ERI VERSION:0005-00 July 2010
System Control and Optimization

78 NOT FOR DISTRIBUTION © Copyright 2010, ERI VERSION:0005-00 July 2010
•The auxiliary nozzle valve on the turbocharger provides brine flow and
pressure adjustment to accommodate typical variations in membrane
requirements
涡轮式能量回收装置上的 辅助浓水管路阀门可调节浓水的流量和 压力以适应膜系统变化的
要求

How does an ERI Turbocharger work?
BRINE
PRIMARY NOZZLE
TURBINE
IMPELLER
VOLUTE
AUXILIARY NOZZLE
VALVE
AUXILIARY NOZZLE
•The Main Nozzle is sized to provide a concentrate system resistance (concentrate pressure)
equal to the maximum design pressure at a constant design concentrate brine flow rate. The
auxiliary nozzle is sized to about 20-25% of the area of the Main Nozzle. The ANCV controls flow
to the AN in the turbine casing. The ANCV will provide a 20-30% pressure range at a constant
brine flow.

79 NOT FOR DISTRIBUTION © Copyright 2010, ERI VERSION:0005-00 July 2010
System control and optimization
•To reduce brine pressure, open the auxiliary nozzle valve until the desired brine flow and pressure are
obtained.
•Opening the ANCV reduces the brine pressure and consequently reduces the boost pressure.
Opening the ANCV increases the total nozzle area, allowing more flow and/or a lower pressure. This is
typically done during those periods of RO plant operation that require less pressure than the maximum
designed membrane pressure.
•To increase brine pressure, close the auxiliary nozzle valve until the desired brine flow and pressure
are obtained. The TURBO will produce the most boost pressure when the ANCV is fully closed.
•The Aux Nozzle valve can be manual (as shown) or actuated.
•If automated, the best control signal is the brine flow.

SLIDE 80
NOT FOR DISTRIBUTION
© Copyright 2011, ERI
Version 005-01-11
TurboCharger Rotating Assembly

SLIDE 81
NOT FOR DISTRIBUTION
© Copyright 2011, ERI
Version 005-01-11
dP = (Nte) x (Rr) x (Pbr – Pe)
Where Rr = ratio of brine flow to feed flow

Pbr = brine pressure at turbine inlet

Pe = Turbo exhaust pressure

Nte = Hydraulic Energy Transfer Efficiency from Curve

Turbo Pressure Boost – Example II.
Perth SWRO plant, Membrane feed flow 2‘453 m3/h, conversion 45 %, membrane feed pressure 57.9 bar,
brine pressure 57.2 bar, brine back pressure of 0.5 bar. What is the pressure boost???
AT-7200 = (0.82) x (0.55) x (57.2 – 0.5) = 25.6 bar boost

82 NOT FOR DISTRIBUTION © Copyright 2010, ERI VERSION:0005-00 July 2010
Turbo Operation

83 NOT FOR DISTRIBUTION © Copyright 2010, ERI VERSION:0005-00 July 2010
Advanced Technology (AT) Turbocharger

84 NOT FOR DISTRIBUTION © Copyright 2010, ERI VERSION:0005-00 July 2010
Advanced Technology (AT) Turbocharger
Application 应用范围
•Medium to large scale energy recovery device for SWRO
适用于中大型海水淡化系 统
Advantages 优势
•Reliability 可靠性
−Product lubricated bearings 润滑轴承
−No scheduled maintenance 无需周期性 维护
−Ease of installation 易于安装
•Designed for Optimum Efficiency 可设计的最佳效率
−Customized Hydraulic Design for each specific application
对于每一个特殊的 应用都可以 进行量身定做的水力模型 设计
−Customized 3-D geometry Impellers 量身定做三 维立体的叶 轮设计
•Removable volute inserts 可移动更换式蜗壳
•Compact design allowing for smallest foot print available
紧凑型设计更适合小型的占地面 积
•Feed pump size reduction 减小给水泵的尺寸

85 NOT FOR DISTRIBUTION © Copyright 2010, ERI VERSION:0005-00 July 2010
Advanced Technology (AT) Turbocharger (Cross Section)
THRUST BEARING
CENTER BEARING
PUMP IMPELLER
PUMP VOLUTE
TURBINE IMPELLER
TURBINE VOLUTE
PUMP BEARING

86 NOT FOR DISTRIBUTION © Copyright 2010, ERI VERSION:0005-00 July 2010
Advanced Technology (AT) Turbocharger Con’d
Pump Side
Diffuser
Main
Turbine
Nozzle
Turbine
Side Volute
Pump Side
Volute
PEI Patent Pending

87 NOT FOR DISTRIBUTION © Copyright 2010, ERI VERSION:0005-00 July 2010
Volute Insert Technology 蜗壳内插技术
•ERI’s unique ability to improve efficiency and reduce water cost over the life
of the plant PEI 可更换式涡壳是提高效率和降低系 统运行成本的最独特的 产品
•Does not require complete equipment replacement 不需要完整的零部件更 换
•Simple field retrofit with virtually no downtime 无需周期性的停机 检修,现场更
换简单

HTCAT
AquaSpire

88 NOT FOR DISTRIBUTION © Copyright 2010, ERI VERSION:0005-00 July 2010
Volute Insert Technology Con’d
•Ability to adapt to improvement in desalination technology
能够适应海水淡化技 术的改进
•Enhanced membrane recovery (Impact on feed flows)
提高膜的回收率(影响 进水流量)
•10 years ago 35% recovery was industry norm 10年前35%的回收率是 标准设计
•Now 40 – 45 % recovery is the norm 现在回收率 40-45%是标准设计
•Reduction in operating pressure 降低操作 压力
•10 years ago 70 -74 bar was SWRO norm 10年前70-74bar是海水淡化的 标准设计
•Now 64 -68 bar is the norm 现在64-68bar是标准设计
•Improved pretreatment technology 提高预处理技术
•Ability to take advantage of desal technology improvement without negative
impact on efficiency
在无负效率的影响下能有效地提高淡化技 术的发展

1.5% - 2% of Efficiency will save a customer
Millions $ over the entire Plant Life
效率的1.5%-2%的再增加可以 节约系统数百万美元的运行成本

89 NOT FOR DISTRIBUTION © Copyright 2010, ERI VERSION:0005-00 July 2010
Volute Insert Technology Con’d
•10% change in flow = 1.5% drop in efficiency

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%
100%
0 2004006008001000120014001600180020002200240026002800
Feed Pump Efficiency

Feed Flow (m3/h)
•Easily replicable volute and diffuser components allow for best efficiency
point operation even when operating requirements change
当操作工况改 变时,简易的可复制的涡壳和扩散器部件可在最好的效率点下工作

90 NOT FOR DISTRIBUTION © Copyright 2010, ERI VERSION:0005-00 July 2010
HALO Turbocharger

91 NOT FOR DISTRIBUTION © Copyright 2010, ERI VERSION:0005-00 July 2010
HALO Turbocharger
Application 应用
•Small to medium skid mounted SWRO systems
适用于中小型海水淡化系 统
Advantages优势
•Full 3-D geometry impellers 完全的三 维立体叶轮
•More reliable thrust bearing 更可靠的止推 轴承
•Reduces high pressure pump and motor size 较小的高压泵及电机
•Compact design 紧凑的设计
•Lower Installation cost 低安装成本
•Custom rotor designed for highest efficiency 最高效率的定制 转动部件

92 NOT FOR DISTRIBUTION © Copyright 2010, ERI VERSION:0005-00 July 2010
HALO Turbocharger
THRUST BEARING
CENTER BEARING
PUMP BEARING
PUMP
IMPELLER
TURBINE
IMPELLER
PUMP
VOLUTE
TURBINE
VOLUTE

93 NOT FOR DISTRIBUTION © Copyright 2010, ERI VERSION:0005-00 July 2010
Low Pressure Turbocharger (LPT)

94 NOT FOR DISTRIBUTION © Copyright 2010, ERI VERSION:0005-00 July 2010
Low Pressure Turbocharger (LPT)
Application 应用
•Designed for use in low pressure, multi-stage Brackish Water RO
systems 适用于低 压、多级苦咸水反 渗透系统

Advantages 优势
•All components made from cast parts for long life 所有部件适用寿命 长
•Custom designed for customer specific conditions
对于每个应用都进行量身定做 设计
•Balances first and second stage flux rates 平衡第一和第二段的流量
•Eliminates interstage booster pump 取消段间增压泵
•Reduces first stage fouling potential 降低第一段的 污堵的可能性
•Replaces brine control valves 取代浓水控制阀

95 NOT FOR DISTRIBUTION © Copyright 2010, ERI VERSION:0005-00 July 2010
Low Pressure Turbocharger (LPT)
THRUST BEARING
CENTER BEARING
PUMP BEARING
PUMP
IMPELLER
TURBINE
IMPELLER
PUMP
VOLUTE
TURBINE
VOLUTE

96 NOT FOR DISTRIBUTION © Copyright 2010, ERI VERSION:0005-00 July 2010
LPT Process Design
1ST STAGE MEMBRANES
LPT TURBO CHARGER
2ND STAGE MEMBRANES
250 PSI
(17.24 bar)
2000 GPM
(454.2 m3/h)
30 PSI (2 bar)

2000 GPM (454.2 m3/h)
HIGH PRESSURE PUMP
5 PSI (.35 bar)
1000 GPM (227.1 m3/h)
5 PSI (.35 bar)
1500 GPM (340.7 m3/h)
5 PSI (.35 bar)
500 GPM (113.6 m3/h)
5 PSI (.35 bar)
500 GPM (113.6 m3/h)
311 PSI (21.44 bar)
326 PSI
(22.48bar)
1000 GPM
(227.1 m3/h)
230 PSI (15.86 bar)
1000 GPM (227.1 m3/h)
500 GPM (113.6 m3/h)
• Inter-stage pressure boosting: LPT

97 NOT FOR DISTRIBUTION © Copyright 2010, ERI VERSION:0005-00 July 2010
Flux Balancing
What is Flux?
•Defined as the permeate produced per membrane area
−Lmh: Liters per square meter per hour
−Gfd: Gallons per square foot per day

•Balancing flux between stages spreads the rate of fouling
deposition over the greatest membrane area
•Improves final system permeate quality when the flux is
increased in the last stages
•Reduces recovery in 1
st
stage and increases it on the 2
nd

stage
•Can reduce fouling potential in the 1
st
stage

98 NOT FOR DISTRIBUTION © Copyright 2010, ERI VERSION:0005-00 July 2010
Interstage Boost
•Advantages
−Low operational costs
−Highest power efficiency
−Reduced feed pump HP

•Disadvantages
−Slightly higher capital costs
Boost pump, manifold (if a turbo is not used)

99 NOT FOR DISTRIBUTION © Copyright 2010, ERI VERSION:0005-00 July 2010
BWRO Energy Cost Comparison
Case Basic Design (A)
Permeate
Throttling
(B)
Interstage
Turbo Boost (C)
Pump Power (hp) 309 355 280
Motor and VFD size (hp) 350 400 300
Permeate production (m3/hr) 500 500 500
Flux Rate (lmh)
1st stage 23.8 21.9 21.9
2nd stage 16.5 20.2 20.2
Specific Permeate Energy Rate
(kW/m3) 0.4575 0.5325 0.42
Annual Power Usage (8,322hrs/yr) 1,928,624 2,215,733 1,747,620
Annual Power Cost ($0.10kWhr)
$
192,862 $ 221,573
$
174,762
20 year Power Cost $ 3,857,240 $ 4,431,460 $ 3,495,240
Estimated Savings $ 936,220 USD

100 NOT FOR DISTRIBUTION © Copyright 2010, ERI VERSION:0005-00 July 2010
Making Desalination Affordable

TurboCharger Technology
Desalination Plants

101 NOT FOR DISTRIBUTION © Copyright 2010, ERI VERSION:0005-00 July 2010
Magtaa, Algeria — 500,000 m
3
/ day (132 MGD)
•Largest membrane plant in the world
•25 – AT-7200
To be commissioned in 2011…

SLIDE 102
NOT FOR DISTRIBUTION
© Copyright 2011, ERI
Version 005-01-11
TurboCharger Installation: 8,000 m
3
/ day

SLIDE 103
NOT FOR DISTRIBUTION
© Copyright 2011, ERI
Version 005-01-11
TurboCharger + AquaBold Installation: 3,000 m
3
/ day

SLIDE 104
NOT FOR DISTRIBUTION
© Copyright 2011, ERI
Version 005-01-11
TurboCharger Installation (Brackish): 10,000 m
3
/ day

SLIDE 105
NOT FOR DISTRIBUTION
© Copyright 2011, ERI
Version 005-01-11
TurboCharger Installation Seawater RO Plant

106 NOT FOR DISTRIBUTION © Copyright 2010, ERI VERSION:0005-00 July 2010
Making Desalination Affordable

ERD Trouble-shooting
能量回收装置的 现场故障分析和解决方案

107 NOT FOR DISTRIBUTION © Copyright 2010, ERI VERSION:0005-00 July 2010
PX Device – Trouble-Shooting
Symptom: Excessive Noise
征兆:过高的噪音
−Operating the units above rated flow
操作工况超 过额定流量
−Operating units with insufficient backpressure
操作工况背 压过低
−Entrained air in the system
系统中有气体
−Damaged Ceramics 损坏的转子
Symptom: Stalled Rotor
征兆:转子停转
−Operating the units below rated flow 操作工况低于 额定流量
−Operating the units above rated pressure rating 操作工况超 过额定压力
−Foreign debris 外来的碎片

108 NOT FOR DISTRIBUTION © Copyright 2010, ERI VERSION:0005-00 July 2010
Symptom: High Membrane Feed Pressure
征兆:高的反 渗透膜进水压力
−Operating the main HPP at to high of a flow rate 主高压泵在高流量下运行
−Changes in membrane conditions or feed water 膜的工况或 进水情况改 变
−Unbalanced PX array flows PX列的流量不平衡
−Stuck Rotor 转子停转
Symptom: Low Permeate Flow
征兆:低的 产水流量
−Malfunctioning high-pressure pump 高压泵故障
−High lubrication/leakage flow through PX device(s)
PX装置的高的 润滑/泄漏流量
−Leakage from high-pressure to low-pressure circuit
从高压到低压流量圈的泄漏


PX Device – Trouble-Shooting

109 NOT FOR DISTRIBUTION © Copyright 2010, ERI VERSION:0005-00 July 2010
TurboCharger Device – Trouble-Shooting
Symptom: Stalled RA 征兆:RA停转
−Foreign Debris 外来的碎片
−Operating the units below rated flow/pressures 操作工况低于 额定流量和 压力
−Damaged thrust bearing 止推轴承损坏
−Incorrect recovery/recovery ratio 不正确的回收率
Symptom: Abnormal Noise
征兆:不正常的噪音
−Operating the units with
insufficient back pressure
操作工况背 压过低

110 NOT FOR DISTRIBUTION © Copyright 2010, ERI VERSION:0005-00 July 2010
TurboCharger Device – Trouble-Shooting
Symptom: Unable to achieve design boost pressure
征兆:不能达到 设计的增压压力
−Incorrect recovery/recovery ratio 不正确的回收率
−Aux/By-pass valve in incorrect position
辅助管道和旁路管道上的 阀门在不正确的位置上
−Debris – damaged bearing 碎片-轴承损坏
−Changes in membrane or feed water
膜或进水工况改 变
Symptom: Excessive boost pressure
征兆:超额的增压压力
−Incorrect recovery/recovery ratio 不正确的回收率
−Aux/By-pass valve in incorrect position
辅助管道和旁路管道上的 阀门在不正确的位置上
−Change in high-pressure pump performance 高压泵的性能改 变
−Changes in membrane or feed water 膜或进水工况改 变

Misconceptions of ERD Technology
能量回收装置的 误解

SLIDE 112
NOT FOR DISTRIBUTION
© Copyright 2011, ERI
Version 005-01-11
PX Device Misconceptions: Fact versus Fiction
Fiction: PX Devices have higher operating expense than other isobaric
devices. PX比其他的等 压式能量回收装置操作 压力高。
FACT: The PX device has a peak efficiency of 98% and is being
operated in some of the lowest power consuming plants in the world
today. The PX has one moving part, no scheduled maintenance and has
the highest availability of any ERDs currently available.
PX装置的最大的效率是 98%,现在在全球正在以最低的能耗运行着。 PX只
有一个运 动部件,无需日常的 维护并且是所有能量回收装置中最适用的。
Fiction: PX Devices require excessive pressure before they start to
rotate. PX装置在启 动时需要更高的 压力。
FACT: PX devices need process flows (high-pressure and low-
pressure flow) and lubrication flow in order to rotate.
为了启动转子,PX装置需要工 艺流量(高压和低压流量)和润滑流量。

SLIDE 113
NOT FOR DISTRIBUTION
© Copyright 2011, ERI
Version 005-01-11
PX Device Misconceptions: Fact versus Fiction
Fiction: When operating multiple PX devices in an array, a stuck rotor will
cause overflow and damage to the operating PX devices.
当多个PX装置在一套系 统中运行时,一个停转的PX会引起超流和 对PX的损伤。
FACT: The PX device is passive in nature. The operable units will
continue to perform as designed. The inoperable unit will re-circulate
concentrate back to the membrane feed but the impact will be determined by
the number of devices in the array. Overflow to the operable units will NOT
occur. PX本身是被动转动的,运转的单元根据设计要求连续运行着。停 转的转子将浓水直接送入
给水且对系统的影响主要取决于 PX的数量。超流将不会 发生 。
Fiction: PX devices can’t be operated at the maximum rated flow.
PX装置不能在最大的 额定流量下操作。
FACT: All PX devices are designed to operate at full rated capacity and
the operators are free to do so. Installing additional capacity in an array does
have several benefits, including; optimizing performance, availability,
flexibility and longevity. 所有的PX产品都可以在最高的 额定流量下设计同时可以仸意的操
作,在一列中安装 额外的容量会有更好的 优势:优化性能、实用、操作弹性 和寿命长。

SLIDE 114
NOT FOR DISTRIBUTION
© Copyright 2011, ERI
Version 005-01-11
PX Device Misconceptions: Fact versus Fiction
Fiction: The high-pressure portion of the system can be filled via the LP
INLET side of the PX device.系统的高压部分可以通 过PX的低压给水部分填 补。





Fiction: PX units have a 5 year useful-life. PX只有五年的使用期。


FACT: The PX device is a passive device. The low-pressure and high-
pressure flow paths act as independent pipes flowing in opposite
directions with an integrated seal zone between the “pipes”.
PX是一个被 动装置。低压流量和高 压流量由于完整的密封区的隔离可以看成是两个相互独立
流道相反的两根管道。
FACT: PX units that have been commercially released and
commissioned in 1997 are still operating today. PX devices have yet
to reach their end-of-life or wear-out periods.
PX产品从1997年正式得投入市 场和运行至今, 还在不断的延伸其使用期和磨 损期。

SLIDE 115
NOT FOR DISTRIBUTION
© Copyright 2011, ERI
Version 005-01-11
PX Device Misconceptions: Fact versus Fiction
Fiction: ―Over-flush‖ is required by the PX device. PX需要超流。



FACT: The PX device does not require over-flush and a
majority of the PX installations operate with “balanced” flows. The
salinty increase at the membranes is typically between 2-3%
(depending on membrane recovery). Over-flush can be
implemented at the operators discretion.
PX装置不需要超流运行通常是要求在水量平衡的情况下安装及运行。膜 进口的含盐
量将会增加 2-3%(依据膜的回收率)。是否超流运行主要依靠操作者的要求。

Fiction: Small particles can cause a rotor to stop.微小颗粒可造成 转子的停转

FACT: Large debris such as broken pieces of PVC can cause a
rotor to stop but there are no known incidences of “small” particles
causing severe damage or stalling issues.
大的碎片,像 PVC碎片将会引起 转子的停转,但是小的 颗粒并没有听 说会引起危害等情

SLIDE 116
NOT FOR DISTRIBUTION
© Copyright 2011, ERI
Version 005-01-11
PX Device Misconceptions: Fact versus Fiction
FACT: PX devices require no maintenance. In fact, even after 5
years of operation, no spare parts or servicing is needed. This
provides more valuable, up-time (> 98%) compared with competing
technologies that need scheduled maintenance and a large stock
pile of spare parts.
PX无需定期维护。事实上,即使超 过5年的运行也无需 备品备件,这与需要定期 维护和
大量的备品备件储备的其他的能量回收来 说,这是非常有价 值的。
Fiction: PX devices require some maintenance and spare parts.
PX 需要定期 维护和备品备件。

SLIDE 117
NOT FOR DISTRIBUTION
© Copyright 2011, ERI
Version 005-01-11
Turbo Device Misconceptions: Fact versus Fiction
Fiction: The turbos need to be isolated when cleaning/flushing the
system. 涡轮增压装置在清洗和冲洗的 时候需要隔离。
FACT:. The turbo does not require isolation during CIP, however it
is best practice to do so or flush thoroughly with fresh water
during system flush.
涡轮增压装置在清洗 时无需隔离,但是系 统清洗是最好采用新 鲜水进行冲洗。

Fiction: You must have a brine control valve upstream /downstream
of the turbo. 在涡轮增压的进出水口必须设置浓水控制阀门
FACT: NO, the turbine side of the turbo along with the aux valve
replaces the brine valve completely.
不需要。涡轮增压的透平段采用了 辅助管路阀门完全可以替代 浓水阀门。

SLIDE 118
NOT FOR DISTRIBUTION
© Copyright 2011, ERI
Version 005-01-11
Turbo Device Misconceptions: Fact versus Fiction
Fiction: You can flush the system through the Turbo
可以通过涡轮增压装置冲洗系 统
FACT: The turbine side of the turbo acts like an orifice plate and
requires a dP to pass water through. In fact, a bypass is used
for flushing.
涡轮增压装置的透平段 实际上像一个收 缩孔,要求有一定的 压差的水才能通 过,
所以需要一个旁路冲洗。
Fiction: Turbocharger must be coupled with high pressure pump.
涡轮增压装置必须和高压泵相连接
FACT: Not true, turbocharger can be mounted anywhere in the
plant for best fit into the plant design.
这是不正确的, 涡轮增压装置可以安装在系 统设计中认为最适合的地方。

SLIDE 119
NOT FOR DISTRIBUTION
© Copyright 2011, ERI
Version 005-01-11
Turbo Device Misconceptions: Fact versus Fiction
Fiction: Plant design with turbocharger requires brine disposal
pump. 设置涡轮增压装置的系统设计时需要设置浓水泵
FACT: Not true, turbocharger operates with brine exit back
pressure which can reach several bars thus eliminating need
for brine disposal pump.
这是不正确的, 涡轮增压装置是利用 浓盐水的出口 压力得到一定的 压力,因此无
需浓水泵。

ERI Services

SLIDE 121
NOT FOR DISTRIBUTION
© Copyright 2011, ERI
Version 005-01-11
ERI Services
ERI is Pleased to offer the following Services:
−P&ID Reviews
−Control Logic Reviews
−Commissioning Services

SLIDE 122
NOT FOR DISTRIBUTION
© Copyright 2011, ERI
Version 005-01-11
Energy Recovery Power Models and Selector Tools 1/4/2008 PX
®
Energy Recovery Device System Analysis
A B C D E F G H
FLOW US gpm 408 222 186 222 408 183 224 224
m3/hr 93 50 42 50 93 42 51 51
m3/day 2,222 1,211 1,012 1,211 2,222 1,000 1,222 1,222
PRESSURE psi 24 24 943 919 943 0 928 15
bar 1.7 1.7 65.0 63.4 65.0 0.0 64.0 1.0
QUALITY mg/l 39,000 39,000 39,000 41,025 40,103 200 72,751 70,745
PX UNIT PERFORMANCE INPUT DESCRIPTIONS INPUTS
PX-260 Units Metric or English M or E M
Number of PX units quantity 1 Manual or auto efficienciesm or a a
m3/hr 50.9 Permeate flow m3/day 1,000
PX lubrication per array m3/hr 0.5 RO recovery rate % 45%
PX lubrication flow % 0.9% RO feed pressure bar 65.0
Dfferential pressure HP side bar 0.6 Membrane differential pressurebar 1.0
Differential pressure LP sidebar 0.7 PX LP discharge pressure bar 1.0
PX efficiency % 97.2% Feedwater salinity mg/l 39,000
PX mixing at membrane feed % 2.8% Cost of power $/kWh $0.10
Operating capacity % 86.2% HP pump efficiency % 80%
Energy recovered kW 139.9 HP pump motor efficiency % 96%
Circulation pump efficiency % 80%
HIGH PRESSURE PUMP Circulation pump motor efficiency% 94%
HP pump efficiency % 68% Circulation pump VFD efficiency% 97%
HP pump motor efficiency % 92% PX device design margin % 5%
HP pump power consumed kW 118.0
PX SYSTEM POWER RESULTS
CIRCULATION / BOOSTER PUMP Total power consumption kW 122
Circulation pump efficiency % 65% Specific power consumption kWh/m3 2.93
Circulation pump motor efficiency% 91% Specific power consumptionkWh/kgal 11.1
Circulation pump VFD efficiency% 97% Power cost saved with PX $/year 122,510$
Total circulation pump power kW 3.9
Warnings
SYSTEM FEED PUMP kW 0.0 Suggestions
NONE
NONE
PX model
PX unit flow

123 NOT FOR DISTRIBUTION © Copyright 2010, ERI VERSION:0005-00 July 2010
Contacts
•Ms. Ping Zou, [email protected]
•Mr. Mike Zhan, [email protected]
•Ms. Jesse Yu, [email protected]
•Mr. Eric Kadaj, [email protected]
•Mr. Rodney Clemente. [email protected]

THANK YOU
Tags