ESFUERZO-DEFORMACION

34,407 views 24 slides Oct 15, 2014
Slide 1
Slide 1 of 24
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24

About This Presentation

ESFUERZO/DEFORMACION PRESENTACION SLIDE SHARE GUILLERMO MARTINEZ C.I-23.592.558


Slide Content

Republica bolivariana de Venezuela Ministerio del poder popular Instituto universitario Santiago Mariño “Extensión Porlamar”     ESFUERZO Y DEFORMACION.         Realizado por: Guillermo Martínez C.I-23.592.558 Ing. Mecánica.        

Las propiedades mecánicas de los materiales nos permiten diferenciar un material de otro ya sea por su composición, estructura o comportamiento ante algún efecto físico o químico, estas propiedades son usadas en dichos materiales de acuerdo a algunas necesidades creadas a medida que ha pasado la historia, dependiendo de los gustos y propiamente de aquella necesidad en donde se enfoca en el material para que este solucione a cabalidad la exigencia creada.

En  la mayoría de las ocasiones, los materiales metálicos se emplean con fines estructurales. Es decir, los componentes fabricados con metales deben responder de forma adecuada a determinadas situaciones mecánicas. La expresión de responder de forma adecuada puede entenderse en muy diferentes sentidos. Así, en muchos casos, significa no fallar en servicio, pero en otros como, por ejemplo, un fusible mecánico, puede significar lo contrario.

Si un cuerpo es sometido a esfuerzo tensivo o compresivo en una dirección dada, no solo ocurre deformación en esa dirección (dirección axial) sino también deformaciones unitarias en direcciones perpendiculares a ella (deformación lateral). Dentro del rango de acción elástica la compresión entre las deformaciones lateral y axial en condiciones de carga uniaxial (es decir en un solo eje) es denominada relación de Poisson . La extensión axial causa contracción lateral, y viceversa. Las propiedades mecánicas de los materiales nos permiten diferenciar un material de otro ya sea por su composición, estructura o comportamiento ante algún efecto físico o químico, estas propiedades son usadas en dichos materiales de acuerdo a algunas necesidades creadas a medida que ha pasado la historia, dependiendo de los gustos y propiamente de aquella necesidad en donde se enfoca en el material para que este solucione a cabalidad la exigencia creada.

DEFORMACION REAL Y UNITARIA. La deformación es el proceso por el cual una pieza, metálica o no metálica, sufre una elongación por una fuerza aplicada en equilibrio estático o dinámico, es decir, la aplicación de fuerzas paralelas con sentido contrario; este puede ser resultado, por ejemplo de una fuerza y una reacción de apoyo, un momento par o la aplicación de dos fuerzas de igual magnitud, dirección y sentido contrario (como es el caso de los ensayos de tensión y compresión).

La deformación de cualquier pieza está relacionada con varias variables, como son el área transversal a la aplicación de la fuerza (es decir, que la fuerza y el área formen un ángulo de 90º), la longitud inicial de la pieza y el módulo de elasticidad (al cual nos referiremos más adelante).

Luego tenemos una primera fórmula para hallar la deformación de un material: δ = (PL)/(AE) Donde: P: Fuerza aplicada a la Pieza L: Longitud Inicial de la Pieza A: Área transversal a la aplicación de la fuerza E: Modulo de Elasticidad del Material Es importante resaltar que la relación (P/A), se mantiene constante, así ocurran cambios en las longitudes iniciales de una pieza A y una pieza B, con longitudes L1 y L2, mientras se mantenga la relación (P/A) y el material no cambie (ejemplo, un acero de bajo carbono). Ahora, reordenemos la ecuación, si teníamos: δ = (PL)/ (AE) Definimos la deformación unitaria como: ε = ( δ /L) Y el esfuerzo axial, como la relación de fuerza sobre área transversal: σ = ( P/A) Tendremos , al reemplazar en la ecuación inicial, la ley de Hooke : σ = E* ε  

DIAGRAMA ESFUERZO-DEFORMACION UNITARIA.

Este diagrama generalizado, es un ejemplo de un material dúctil, es decir, que el material fluye después de un cierto punto, llamado punto de fluencia. La ley de Hooke solo es aplicable para la zona elástica, que es la zona que está antes del punto de fluencia, zona donde el material tiene una relación de proporcionalidad del esfuerzo y la deformación unitaria. Podríamos  pensar que la deformación es siempre un fenómeno negativo, indeseable por tanto produce esfuerzos y tensiones internas en el material. La deformación de los materiales produce mayores niveles de dureza y de resistencia mecánica, y es utilizado en algunos aceros que no pueden ser templados por su bajo porcentaje de carbono.  El aumento de dureza por deformación en un metal se da fundamentalmente por el desplazamiento de los átomos del metal sobre planos cristalográficos específicos denominados planos de deslizamiento.

TIPOS DE FUERZAS. Para entender a la perfección el comportamiento de la curva Esfuerzo-Deformación unitaria, se debe tener claro los conceptos que hacen referencia a las propiedades  mecánicas de los materiales que describen como se comporta un material cuando se le aplican fuerzas externas, y a las diferentes clases de estas mismas a las cuales pueden ser sometidos. Fuerzas de tensión o tracción: La fuerza aplicada intenta estirar el material a lo largo de su línea de acción.

Fuerza de Flexión:  Las fuerzas externas actúan sobre el cuerpo tratando de “doblarlo”, alargando unas fibras internas y acortando otras.

Fuerzas de compresión: la Fuerza aplicada intenta comprimir o acotar al material a lo largo de su línea de acción.

Fuerza de Cizalladura o cortadura:  Las fuerzas actúan en sentidos contrarios sobre dos planos contiguos del cuerpo, tratando de producir el deslizamiento de uno con respecto al otro.

Cualquier fuerza externa que se aplique sobre un material causa deformación, la cual se define como  el cambio de longitud a lo largo de la línea  de acción de la fuerza. Para estudiar la reacción de los materiales a las fuerzas externas que se aplican, se utiliza el concepto de esfuerzo.

El esfuerzo tiene las mismas unidades de la presión, es decir, unidades de fuerza por unidad de área. En el sistema métrico, el esfuerzo se mide en Pascales (N/m 2 ). En el sistema inglés, en psi (lb/in 2 ). En aplicaciones de ingeniería, es muy común expresar  el esfuerzo en unidades de Kg /cm 2 .  

DEFORMACION SIMPLE / UNITARIA. Se refiere a los cambios en las dimensiones de un miembro estructural cuando se encuentra sometido a cargas externas. Estas deformaciones serán analizadas en elementos estructurales cargados axialmente,  por lo que  entre las cargas a estudiar estarán las de tensión o compresión. EJEMPLO . Los miembros de una armadura. -Las bielas de los motores de los automóviles. Los rayos de las ruedas de bicicletas. Etc. DEFORMACION UNITARIA Todo miembro sometido a cargas  externas se deforma debido a la acción de fuerzas. La deformación unitaria, se puede definir como la relación existente entre la deformación total y la longitud inicial del elemento, la cual permitirá determinar la deformación del elemento sometido a  esfuerzos de tensión o  compresión axial. Por lo tanto la ecuación que define  la deformación unitaria un material sometido a cargas axiales está dada por:

PROBLEMA #1 Un poste corto construido con un tubo circular hueco de aluminio, soporta una carga de compresión de 54  kips (Fig. 1). Los diámetros interior y exterior del tubo son  d1=36  in y  d2=  3.6 in, respectivamente y su longitud es de 40 in. Hay que determinar el esfuerzo de compresión. Solución: Suponiendo que la carga de compresión actúa en el centro del tubo hueco, podemos usar la ecuación σ= P ⁄ A para calcular el esfuerzo normal. La fuerza P es igual a 54 k (o 54 000 lb) y el área A de la sección transversal  es: A= ( π /4) · (d2²-d1²) = ( π / 4) · [(5.0 in) ² - (3.6 in) ²] = 9.456 in² Por lo tanto, el esfuerzo de compresión en el poste es: σ = P / A = 54 000 lb / 9.456 in² =5710 psi. Si la fuerza tuviera sentido opuesto al mostrado en la figura 3, el esfuerzo seria de tensión ó tracción, ya que tiende a alargar el poste, este tendría la misma magnitud, ya que la fuerza P es la misma, pero en otra dirección y el área transversal A si es exactamente la calculada anteriormente.           PROBLEMA #1

PROBLEMA #2

PROBLEMA #3

PROBLEMA #4

PROBLEMA #5
Tags