Evaluacion geometria

3,920 views 26 slides Jan 19, 2014
Slide 1
Slide 1 of 26
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26

About This Presentation

No description available for this slideshow.


Slide Content

Revista de Investigaci?n Educativa Conect@2
Mayo Agosto 2011
A?oII, N?m. 4
65
EVALUACIÓN EN GEOMETRÍA: VALORACIÓN DEL
INSTRUMENTO A PARTIR DEL ENFOQUE ONTO -SEMIÓTICO
Autor:Mtra. Claudina Canter
1
y Mtra. Mónica Bocco
2
1
Dpto. de Matemática–Facultad de Ciencias Agropecuarias. Universidad Nacional de Córdoba.
Prof. Ayudante A–Investigadora área de Educación en Matemática.
2
Dpto. de Matemática–Facultad de Ciencias Agropecuarias. Universidad Nacional de Córdoba.
Prof. Asociada–Coordinadora de Matemática–Investigadora área Matemática Aplicada y
Educación en Matemática.

Revista de Investigaci?n Educativa Conect@2
Mayo Agosto 2011
A?oII, N?m. 4
66
RESUMEN
La evaluación es una parte importante del proceso de enseñanza–aprendizaje
pues refleja los conocimientos enseñados,siempre queel instrumento de
evaluación esté bien diseñado,comotambiénlo realmente aprendido por los
alumnos. Por esto es importante realizar un análisis detalladotantode la
evaluación como de las resoluciones de los estudiantes.
A partir de las herramientas conceptuales didáctico-matemáticas del “Enfoque
ontosemiótico de la cognición matemática” se identificaron objetos (elementos
lingüísticos, conceptos, procedimientos, propiedades y argumentos) y la
correspondencia entre estos y sus significados en el análisis deuna evaluación
que presentaun problema de aplicación de geometría a situaciones propias de las
ciencias agropecuarias.
En el análisis realizado a las resoluciones de los alumnos se identificaron
conflictos de significado, dificultades y obstáculosen el momento de enfrentarse a
una situación problemática real. La interpretación del enunciado del problema fue
una de las dificultades más importante, la cual quedó evidenciada en la no
correspondencia entre la identificación de procedimientos y proposiciones con los
significados y resoluciones.
Palabras clave:geometría–enfoque ontosemiótico–medida–significado

Revista de Investigaci?n Educativa Conect@2
Mayo Agosto 2011
A?oII, N?m. 4
67
1. INTRODUCCIÓN
La evaluación de los conocimientos adquiridos por los alumnos es parte del
proceso de enseñanza-aprendizaje. Enpalabras de Miller (citado por Cano,E.
2008), la evaluación orienta el currículum y puede, por lo tanto, generar un
verdadero cambio en los procesos de aprendizaje. Es por esto importante
reconocer que la evaluación debe ser formativa, es decir valorar nosólo la
capacidad de aprender contenidos o procedimientos en forma memorística sino el
logro de competencias. Debe existir una correspondencia entre los saberes
enseñados y los saberes evaluados a fin de que la resolución de la evaluación
refleje lo que los estudiantes han aprendido de la materia.
Los contenidos de matemática abordados en el Ciclo de Conocimientos
Iniciales (CCI), de la carrera de Ingeniería Agronómica de la Universidad Nacional
de Córdoba–Argentina (UNC), están diseñados con elobjetivo de que los
alumnos realicen una revisión de los temas estudiados en el nivel medio (Diseño
Curricular Educación Secundaria de la provincia de Córdoba-Argentina, 2011).
Sin embargo la experiencia en el dictado del CCI permite afirmar que algunos
alumnos ingresan con serias dificultades en lo referente asaberes previos
necesarios.
Teniendo en cuenta quela actividad agronómica, en muchos casos,
requiere resolver problemas del área de la geometría básica y aplicada, en el
presente trabajo evaluamos la manera en la cual se afronta la resolución de
problemas de dicha área.
La geometría es una parte importante de loscurrículos actuales de la
educaciónmedia, pero no siempre se trasmite en su enseñanza en las aulas; de
hecho esta rama de la matemáticaes una de las que sufre una gran postergación

Revista de Investigaci?n Educativa Conect@2
Mayo Agosto 2011
A?oII, N?m. 4
68
en las escuelas (Bressan, A.; Bogisic, B. y Crego, K., 2007), que de hechose ve
reflejada en el bajo rendimiento de los alumnos a la hora de resolver problemas
geométricos.
Según Perez, S. y Guillén, G.(2008), la geometría debe enseñarse
centrada en la resolución de problemas de la vida diaria. Los conceptos
matemáticos deben trabajarse sobre un contexto, creando esquemas y fórmulas,
descubriendo relaciones y regularidades y hallando semejanzas con problemas
trabajados con anterioridad.
Los conceptos involucrados enel problema que se evalúason los de
longitud, área y volumen. Es importante que además de reconocer y utilizar dichos
conceptos, los alumnos puedan vincularlos con sus respectivas unidades de
medida. Generalmente en la escuela secundaria “los alumnos se ven sometidos a
tareas de conversión de unidades, sin haberse acercado conceptualmente a las
magnitudes y sus medidas y sin darse cuenta de la necesidad misma de medir”.
(Gutiérrez y Vanegas,citado porZapata Grajales, F. y Cano Velásquez, N., 2008).
Es poresto necesario poner énfasis en el trabajo de las relaciones existentes
entre conceptos y unidades de medida.
Para facilitar la integración de los conceptos geométricos con las unidades
demedida correspondientes, es conveniente trabajar con situaciones reales pues
esto permite darle significado a las magnitudes con las que se trabaja.
ElGrupo Cero, citado por Luelmo M. (2001) sostiene: “Y no es el uso
mecánico de unidades ya dadas y suaplicación a situaciones estáticas lo que
mejor puede dar ocasión a una actividad que no resulte aburrida para cualquiera y
a una reflexión que no empequeñezca al alumno ante aparatos de medida más
precisos que él, pero menos dotados para hacer preguntas pertinentes y tomar
decisiones adecuadas al contexto.”

Revista de Investigaci?n Educativa Conect@2
Mayo Agosto 2011
A?oII, N?m. 4
69
Por lo expuesto, es importante analizar las dificultades que se les presentan a los
estudiantes al enfrentarse a una situación problemática realy en este caso propia
de la agronomía.
Tal como lo expresan Godino, Batanero y Font(2003) “Hablamos deerror
cuando el alumno realiza una práctica (acción, argumentación, etc.) que noes
válida desde el punto de vista de la institución matemática escolar”.
Es importante tener en cuenta que los errores cometidos por los estudiantes
no son producto de una casualidad, sino que tienen un real motivo.“Elerror, en
realidad, puede mostrar donde ha fallado el proceso de aprendizaje, en quenivel
de pensamiento se encuentra el alumno, cuál es la idea que está presente en su
raciocinio sobre el tema abordado.” (De Souza Melo, 2009). Por tal motivo es
conveniente conocereltipo de erroresqueocurren con más frecuencia a la hora
de resolver problemas geométricos.
A fin de confeccionar un instrumento de evaluación adecuado, el primer
objetivo del trabajo es, a partir de las herramientas conceptuales didáctico-
matemáticas del “Enfoque ontosemiótico de la cognición matemática” (Godino, J.;
Batanero, C. y Font, V., 2007), analizar un problema de aplicación de geometría a
situaciones propias de las ciencias agropecuarias (que es parte de la evaluación).
En dicho análisis se identificaron objetos (elementos lingüísticos, conceptos,
procedimientos, propiedades y argumentos) y la correspondencia entre estos y
sus significados.
Por otra parte Giménez Rodríguez, J. (1997) sostiene que evaluar implica:
a) recoger y debatir información sobre los procesos educativos, b) analizar dicha
información de formaque nos permita emitir juicios, y c) tomar decisiones
adecuadas a los juicios emitidos.

Revista de Investigaci?n Educativa Conect@2
Mayo Agosto 2011
A?oII, N?m. 4
70
Como consecuencia de lo expresando en el párrafo anterior, el segundo objetivo
del trabajo es explorar los errores cometidos por los alumnos al resolver la
situaciónproblemática planteada, indagando, además, sobre las causas de
ocurrencia de los mismos.

Revista de Investigaci?n Educativa Conect@2
Mayo Agosto 2011
A?oII, N?m. 4
71
2. METODOLOGÍA
La investigación que se llevó a cabo es de tipo cualitativo interpretativo,
parala cualse puso en práctica una herramienta de análisis del Enfoque Onto-
Semiótico (EOS). En primer lugar se hizo un análisis epistémico a priori de una
situación problemática, y luego se analizaron las resoluciones del problema dadas
por los alumnos.
La muestrafue de 94 alumnos delCCIperteneciente a la carrera de
Ingeniería Agronómica (Universidad Nacional de Córdoba). La situación
problemática presentada a los alumnos fue la siguiente:
a)Realice un esquema de la situación planteada (sala de ordeñe y pileta de
decantación)
b)¿Cuántos litros de agua contiene la pileta de decantación si está llena?
c)¿Cada cuántos días se necesita desagotar la pileta?
d)Se desea pintar la pileta de decantación con una pintura antihongos
¿Cuántos litros de pintura se necesitan si 1 litro alcanza para cubrir 12
metros cuadrados?
e)Se pretende bordear con un cable de iluminación el techo de la sala de
ordeñe. Si la pared surde la misma mide 16 metros de largo, ¿cuántos
metros de cable se necesitarán?
En un tambo, el techo de la sala de ordeñe es rectangular, de 200metros
cuadrados de superficie. Se realiza la limpieza de los pisos, con agua, dos
veces al día. Se utilizan para cada limpieza 10.000 litros de agua, los cuales
se drenan hacia una pileta de decantación de 10 metros de ancho, 15
metros de largo y 70 centímetros de altura.

Revista de Investigaci?n Educativa Conect@2
Mayo Agosto 2011
A?oII, N?m. 4
72
3. MARCO TEÓRICO
La geometría, en todos los tiempos, ha sido utilizada para resolver
problemas cotidianos, pues, entre otros usos, facilita la medición de estructuras
sólidasreales, ya sean superficies tridimensionales o planas. En cuanto a la
enseñanza, se admite de forma universal la importancia de la geometría como
formadora delrazonamiento lógico.“A través de la reflexión de las experiencias
geométricas obtenidas, se aprenden formas de razonamiento lógico y se
desarrollan intuiciones acerca de toda clase de relaciones matemáticas, se
aprende a hacer observaciones, predicciones y conjeturas, a comprobarlas y a
formular conclusiones” (CofréJorquera,A. yTapia Araya,L,2003).
Los nuevos diseños curriculares para la educación secundaria, y en
particular el de la provincia de Córdoba (Diseño Curricular Educación Secundaria
de la provincia de Córdoba-Argentina, 2011), enfatizan sobre la importancia del
trabajo sobre las figuras geométricas pero sobre todo marcan la importancia de
trabajar con problemas extramatemáticos para lograr la construcción y uso
reflexivo de fórmulas para el cálculo de perímetros, áreas y volúmenes.
En experiencias anteriores en cursos propedéuticos, hemos notado que los
alumnos ingresantes han basado su aprendizaje de la geometría en un estudio
memorístico de perímetros, áreas y volúmenes, lejos de situaciones problemáticas
que pongan en juego tales conceptos. Es decir están acostumbrados a dar
respuestas en forma mecánica y no a relacionar la información de la que disponen
para dar una solución correcta.
Oliver (citado por Abrate, R.; Delgado, G. y Pochulu M, 2006) señala que si
bien en los contenidos oficiales de la currícula de matemática del nivel medio de
Argentina se enfatiza la resolución de problemas como aspecto central en la
enseñanza y el aprendizaje, aún se observa en los libros de texto utilizados en la

Revista de Investigaci?n Educativa Conect@2
Mayo Agosto 2011
A?oII, N?m. 4
73
escuela, la carencia de una secuencia que favorezca la construcción por parte de
losalumnos y el desarrollo de estrategias propias en la resolución de problemas
en el área.
A fin de evaluar la evaluación, tal como lo expresan Elola, N. y Toranzos, L.
(2000), es necesario que en el instrumento se reconozca la presencia de los
siguientes componentes:
1) Búsqueda de indicios: obtener información,ya sea a través de la observación o
de ciertas formas de medición, que brindeindicios visibles de aquellos procesos o
elementos más complejos que son objeto de la evaluación.
2) Forma de registro y análisis: a través de un conjunto variado de instrumentos se
registrainformación que permitirá llevar a cabo la evaluación.Esimportante
considerarla mayor variedad posible de instrumentos y técnicas de análisis en el
proceso deregistro y análisis de la información.
3) Criterios: un componente central en toda acción de evaluar es definir criterios,
es decir elementos a partir de los cuales se puede establecer la comparación
respecto del objeto de evaluación o algunas de sus características.
4) Juicio de valor: la acción de juzgar, de emitir o formular juicios de valor
constituye el componente distintivo de todo proceso de evaluación, este es el
elemento que diferencia la evaluación de una descripción detallada.
5)Toma de decisiones:todaacción de evaluar trae aparejada la toma de
decisiones incluyendo la decisión de inacción y por lo tanto los procesos o
fenómenos objetos de evaluación sufren algún tipo de modificación como
consecuencia de las acciones de evaluación.

Revista de Investigaci?n Educativa Conect@2
Mayo Agosto 2011
A?oII, N?m. 4
74
En general,la finalidad de la evaluación es detectar los conocimientos
adquiridos por los alumnos como así también determinar los posibles obstáculos o
conflictos cognitivos en el aprendizaje de los conceptos involucrados. Trabajos de
investigación relacionados con el aprendizaje (Radatz, H., 1979 y Astolfi, J.,1999),
muestran distintos tipos de errores encontrados en prácticas dealumnos. En
Bocco y Canter(2010),se describe:
?Confundir el concepto involucrado en la resolución del ejercicio (superficie con
perímetro, diámetro con perímetro,etc.).
?No relacionar el concepto con las unidades que le corresponden.
?Convertir incorrectamente unidades o bien operar sin tener en cuenta las
unidades involucradas.
?Inventar una fórmula, ante el desconocimiento de la correcta.
?Operar sin relacionar con la situación planteada.
?No comprender el enunciado del problema.
La enseñanza de la geometría es usualmente abordada siguiendo distintas
corrientes educativas, en algunos casos prevalece la participación activa del
estudiante en la construcción del conocimiento y en otros el estudiante sólo es un
receptor de la exposición del docente. Muchas investigaciones en didáctica de la
matemática señalan que para que se produzca un aprendizaje significativo, el
disparador del tema a enseñar debe ser un problema. Guy Brousseau (2007)
afirma que “El alumno aprende adaptándose a un medio que es factor de
contradicciones, dificultades y desequilibrios, un poco como lo hace la sociedad
humana.”Además sostiene que “Concepciones actuales dela enseñanza van a
exigir al maestro que provoque en el alumno–por medio de la elección sensata de
los “problemas” que propone-las adaptaciones deseadas”.
Por otra parte“Los conocimientos matemáticos se generan a partir de la
resolución de problemas, pero no se reducen a los problemas y técnicas de
solución; el progreso matemático, tanto individual como colectivo, tiene lugar

Revista de Investigaci?n Educativa Conect@2
Mayo Agosto 2011
A?oII, N?m. 4
75
cuando se logran generalizar y justificar losprocedimientos de solución a tipos de
problemas cada vez más amplios.”(Godino, J.; Recio, A.; Roa, R.; Ruiz, F. y
Pareja, J., 2005).

Revista de Investigaci?n Educativa Conect@2
Mayo Agosto 2011
A?oII, N?m. 4
76
4. ANÁLISIS DE LA SITUACIÓN PROBLEMÁTICA
Realizamos en primera instancia el estudio de los “objetos matemáticos” y
significados atribuidos a los mismos. La Tabla 1 describe los elementos
lingüísticos presentes en el problema; se pueden apreciar la gran diversidad de
objetos que se ponen en juegocorrespondientes a los conceptos geométricos y a
la medida de magnitudes.
Expresión Significado / unidad de medida
200 m
2
de área Medida de la superficie m
2
Se utilizan 10000 litros de aguaCantidad de agua utilizada para
realizar una limpieza.

La pileta de decantación de 10
metros de ancho, 15 metros de
largo y 70 centímetros de altura
Dimensiones de la pileta de
decantación.
m, cm
¿Cuántos litros de agua
contiene la pileta de
decantación si está llena?
Medida del volumen de la pileta.
Conversión de unidades.
ℓ, m
3
¿Cada cuántos días se necesita
desagotar la pileta con el agua
de lavado?
Razón entre cantidad de litros
utilizados por día y capacidad de
la pileta. Valor expresado con un
número natural de la cantidad de
días.

¿Cuántos litros de pintura se
necesitan si 1 litro alcanza para
cubrir 12 metros cuadrados?
Medida de la superficie de un
cuerpo. Relación de referencia
entre cantidad de litros y
superficie. Cantidad de pintura
necesaria usando la referencia.

Se pretende bordear con un
cable de iluminación el techo de
Perímetro de la sala. m

Revista de Investigaci?n Educativa Conect@2
Mayo Agosto 2011
A?oII, N?m. 4
77
la sala de ordeñe
la pared sur de la misma mide
16 metros de largo
Medida de una longitud. m
Tabla 1: Elementos lingüísticos y significados
Los conceptos necesarios para la resolución del problema se detallan en la
Tabla 2. Es importante remarcar la importancia no solo de conocer los conceptos
sino también de poder relacionarlos entre sí y aplicarlos en distintos contextos. Por
ejemplo el operar con magnitudes continuas no implica que la respuesta se deba
expresar en la misma magnitud, eso dependerá de cada situación particular.
Concepto Significado
Magnitudes Magnitudes continuas (volumen, área y
perímetro) magnitudes discretas (número
dedías)
Valores numéricos de la medida
de magnitudes.
Números reales y en el ítemcnúmeros
naturales.
Unidades de volumen
(ℓ,m
3
, cm
3
)
Cantidades usadas para medir.
Unidades de área
(m
2
,cm
2
)
Cantidades usadas para medir.
Unidades de longitud
(m, cm)
Cantidades usadas para medir.
Tabla 2: Identificación de conceptos y significados
Los procedimientos utilizados para resolver problemas que involucran el
cálculo de perímetros, áreas y volúmenes de figuras o cuerpos geométricos están
relacionados con los procesos de medida, en este caso indirecta.
Unamedidaesindirectacuando se obtiene, mediante cálculos, a partir de las

Revista de Investigaci?n Educativa Conect@2
Mayo Agosto 2011
A?oII, N?m. 4
78
otras mediciones directas (aquella que se realiza aplicando un aparato para medir
una magnitud).
En la Tabla 3 se detallan los procedimientos utilizados en la resolución de la
situación problemática planteada.
Procedimiento Significado
Conversión de unidades. Operar con cantidades expresadas en la
misma unidad de medida.
Aplicación de fórmulas de
perímetro, área y volumen.
Hallar la cantidad de metros de cable
necesarios para rodear la sala de ordene.
Calcularla medida la superficie de la
pileta y calcular la capacidad de la misma.
Uso de la regla de tres. Calcular cada cuántos días se debe
desagotar la pileta. Hallar los litros de
pintura necesarios para pintar la pileta.
Aproximación del resultado según
elconjunto numérico adecuado.
Expresar el resultado con un número
natural.
División entre dos números
naturales.
Calcular cada cuántos días se debe
desagotar la pileta.
Planteo y resolución de una
ecuación.
Hallar las dimensiones del techo del
tambo.
Tabla 3: Identificación de procedimientos y significados
Las respuestas a los distintos incisos del problema requieren una
comprobación o demostración (cálculos, aplicar fórmulas o resolver ecuaciones).
En la Tabla4 se pueden observar las proposiciones a demostrar para resolver la
evaluación.

Revista de Investigaci?n Educativa Conect@2
Mayo Agosto 2011
A?oII, N?m. 4
79
Proposición Significado
La pileta llena contiene 105000ℓ Respuesta al ítem b)
Hay que desagotar la pileta cada 5
días.
Respuesta al ítem c)
Se necesitan 15,41ℓdepintura
para pintar la pileta
Respuesta al ítem d)
Se necesitan 57 m de cable Respuesta al ítem e)
Tabla 4: Identificación de proposiciones y significados
En la Tabla 5 se muestra una posible resolución de la situación
problemática propuesta, la que a su vez sirve de argumento para demostrar la
veracidad de las proposiciones planteadas en la Tabla 4.
Argumentos Significados
70 cm = 0,7 m
V= 10 m . 15 m . 0,7 m = 105 m
3
1m
3
---------1000ℓ
105 m
3
-----105000ℓ
Justificación de lasproposiciones
1 día--------20000ℓ
5,25 días---105000ℓ
La parte entera de 5, 25 es 5
10 m . 15 m = 150 m
2
2 . 10 m . 0,7 m = 14 m
2
2 . 15 m . 0,7 m = 21 m
2
área total=150 m
2
+14 m
2
+ 21 m
2
=185 m
2
Pintura (ℓ) = (185 m
2
. 1ℓ): 12 m
2
= 15, 41ℓ
x. 16 m = 200 m
2

Revista de Investigaci?n Educativa Conect@2
Mayo Agosto 2011
A?oII, N?m. 4
80
x = 12,5 m
cable (m) =(2 . 16 m)+(2 . 12,5 m)
= 57 m
Tabla 5: Identificación de argumentos y significados
El análisis desarrollado en cada una de las tablas anteriores permite tener
una visión completa al abordar las dificultades que pueden presentarse a la hora
resolver el problema planteado y de las relaciones que se ponen en juego.

Revista de Investigaci?n Educativa Conect@2
Mayo Agosto 2011
A?oII, N?m. 4
81
5. ANÁLISIS DE LAS RESOLUCIONES DE LOS ALUMNOS
A continuación se detallaran los conocimientos y las relaciones que los
alumnos tendrían que tener disponibles para resolver la evaluación con éxito y los
errores que cometieron al resolverla.
Ítem a): Pararealizar un esquema correcto de la situación real planteada el
alumno debe interpretar el enunciado del problema. En general, los dibujos se
correspondían con la real disposición de los elementos implicados en la situación
problemáticapero esto no ocurrióen todos los casos.
?En la Figura 1 se muestra una resolución del ítem a), en la misma se
observa que el estudiante “inventa las dimensiones” de la sala de ordeñe ya que
las mismas no están dadas en el enunciado del problema.
Figura 1: Resolucióndel ítem a) del problema planteado.
Ítem b): Para contestar correctamente esta pregunta la secuencia a seguir
responde a los argumentos presentados en la Tabla 5.
En este ítemloserroresmás frecuentes fueron:
??La fórmula del volumen es presentada ousada incorrectamente.Se
observan resultados donde al sumar tres veces la unidad metro (m)

Revista de Investigaci?n Educativa Conect@2
Mayo Agosto 2011
A?oII, N?m. 4
82
obtienenmetro cúbico (m
3
), lo cual presupone que el alumno sabe que la
unidad de volumen es m
3
pero no la asocia a la operación.
??Problemas al convertir las unidades, por ejemplo no aplicano bien
desconoce las equivalencias entre m
3
yℓ.Nosiempre asocian m a medida
de longitud y m
3
a medida de volumen.
??Involucrandistintas unidades de medida, lo cual muestra que el alumno
opera con los números que dispone, sin detenerse a pensar que es lo que
está haciendo, o cual es el significado del resultado que va a obtener.
Ítem c): La operación matemática involucrada en este ítem es una división, sin
embargo la dificultad no está en la operación a realizar sino en la comprensión de
la situación presentada. El significado de la expresión lingüística involucrada
puede verseen la Tabla1.
Esteítem tuvo gran cantidad de respuestas en blanco, muchos alumnos no
pudieron responder ni si quiera erróneamente. De los alumnos que resolvieron el
inciso se encontraroncomo errores más comunes lossiguientes:
??No usa correctamente el conjunto numérico, realiza la división y le da un
número decimal, pero se le pregunta cantidad de días. Es decir realiza la
operación correcta pero norelaciona el resultado obtenido con la situación
planteada.
??No interpretan el enunciado, dividen 10000ℓ por 105 m
3
, con lo cual queda
evidenciado que no interpretan que dos veces al día se tiran 10000ℓ y
además dividenℓ por m
3
y obtienen días, esto indica que operan sin darle
sentido al resultado.
??Se dan cuenta de que tienen que dar como respuesta un número natural,
pero redondean para arriba, lo que deja entrever que no está interpretando
correctamente la situación planteada, pues la pileta ya se hubiera
rebalsado.
?En la Figura 2 se pueden ver que el alumno al resolver los ítems b) y c)
cometió varios errores. En primer lugar coloca incorrectamente la unidad de

Revista de Investigaci?n Educativa Conect@2
Mayo Agosto 2011
A?oII, N?m. 4
83
volumen (Tabla 2) y luego no realiza en forma correcta la conversión de unidades.
También opera sin tener en cuenta las unidades de medida involucradas y no
expresa el resultado en el conjunto numérico adecuado. El alumno falla en
procedimientos detallados en la Tabla 3.
Figura 2: Resolución de los ítems b) y c) del problema planteado.
Ítem d): Para resolver este inciso el alumno debe tener en clarocuáles la
superficie de un cuerpo,es decir lo que puedepintar.Una vez comprendido esto
tendría que tener en cuenta lo expuesto en la Tabla 5.
Losprincipaleserrores encontrados fueron:
??Calculan el perímetro en lugar del área, no logran asociar el enunciado con
el concepto que tienen que poner a funcionar. Por otra parte no manejan
bien las unidades de medida, no les sirven de ayuda.
??Sólo pintan el piso de la pileta, esto puede relacionarse a que no saben
cuáles la superficie del cuerpo o que no interpretan la situación real.
??No distingue entre volumen del cuerpo y superficie del mismo, por lo que
hace el cálculo de los litros de pintura necesarios con el volumen de la
pileta.
?En el inciso d) sólo calcula la pintura necesaria para pintar el piso de la
pileta y no tiene en cuenta la pintura necesaria para las paredes (Figura 3).
Realiza una incorrecta interpretación del enunciado, es decir interpretación y
significado (Tabla 1).

Revista de Investigaci?n Educativa Conect@2
Mayo Agosto 2011
A?oII, N?m. 4
84
Figura3: Resolución del ítem d) del problema planteado.
Ítem e): Para realizar correctamente este inciso, hay que tener clarocuáles el
significado de calcular un perímetroysaber calcularlo.Ademáses necesario
plantear una ecuación para encontrar el dato faltante teniendo en cuenta quepara
calcular el perímetro sonnecesarioslos mismosdatos quepara calcular el área.
Los erroresde mayor recurrenciafueron:
??Sabe que tiene que calcular perímetro pero no conoce su fórmula, por lo
que podemos inferir queno interpreta claramente el significado de calcular
un perímetro, pues si tuviese eso claro aunque no supiese la fórmula de
memoria lo podría calcular de todos modos.
??No distingue entre perímetro y área, por esta razón relaciona mal los datos.
Se le da unárea y la toma como perímetro. No distingue unidades de
medida m = m
2
, estos dos conceptos no parecen ser diferenciados por el
alumno.
??Calcula área cuando se le pide perímetro. La unidad de medida con la que
expresa el resultado es m. Es decir cuando operano opera con las
unidades, la unidad de medida la pone al final, como si fuera algo anexo y
no como resultado de la operación que realizó.
?En la Figura 4 se puede observar una resolución del ítem e), en la que el
alumno no aplica la fórmula correcta paraperímetro de un rectángulo, etapa
procedimental(Tabla 3).

Revista de Investigaci?n Educativa Conect@2
Mayo Agosto 2011
A?oII, N?m. 4
85
Figura 4: Resolución del ítem e) del problema planteado.

Revista de Investigaci?n Educativa Conect@2
Mayo Agosto 2011
A?oII, N?m. 4
86
6. REFLEXIONES FINALES
A partir del análisis epistémico realizado, podemos inferir cuales son los
conceptos yprocedimientos que el alumno debe tener disponibles para resolver
un problema de geometría aplicada de manera pertinente. Los aspectos más
destacados a tener en cuenta son:
??Reconocer y usar correctamente magnitudes continuas (volumen, área y
perímetro)y magnitudes discretas (número de días).
??Operar con cantidades expresadas en la misma unidad de medida.
Reconocer la función que cumplen las unidades de medida es el primer
paso para comprender que en el cálculo de perímetros, áreas y volúmenes
no puedencoexistir distintas unidades de medida.
??Reconocer y manejar figuras planas y cuerpos, tanto en forma abstracta
como relacionados con una situación real. Es importante conocer las figuras
planas y los cuerpos geométricos, definir sus elementos y deducir sus
propiedades fundamentales, así como saber calcular áreas y volúmenes.
??Aplicar lo detallado anteriormente en un problema de geometría, en este
caso, en un contexto agronómico.
Este tipo de análisis pone al descubierto el papel que juegan los elementos
lingüísticos, conceptos, procedimientos, proposiciones y argumentos en la
resolución del problema propuesto. Tomar conciencia de esto es fundamental para
efectuar prácticas educativas que apunten a que el estudiante aprenda lo que se
pretende enseñar.
En el análisis realizado a las resoluciones de los alumnos identificamos
conflictos de significado, es decir diferencias entre lo que se esperaba que los
alumnos interpretaran y lo que realmente entendieron, lo cual permitió conocer

Revista de Investigaci?n Educativa Conect@2
Mayo Agosto 2011
A?oII, N?m. 4
87
cuales son las dificultades y obstáculos de los mismos en el momento de
enfrentarse a una situación problemática real vinculada con la geometría.
La interpretación del enunciado del problema es una de las dificultades más
comunes encontradas en la resolución de los alumnos. Esta dificultad queda
evidenciada tanto a la hora de realizar los cálculos para resolver los ítems
propuestos como en el momento de dar una respuesta coherente.
Retomando lo expresado por Elola, N. y Toranzos, L. (2000), una vez que los
alumnos han realizado la evaluación, es importante que el docente emita un juicio
de valor al respecto y que tome decisiones en consecuencia, por lo tanto la
información obtenida es de mucha utilidad para la futura planificación de procesos
de enseñanza, a fin de contribuir al aprendizaje significativo por parte de los
alumnos.

Revista de Investigaci?n Educativa Conect@2
Mayo Agosto 2011
A?oII, N?m. 4
88
7. REFERENCIAS
Astolfi, J. P. (1999):El “error”, un medio para enseñar. DIADA Editora. 1ra Edición.
España.
Abrate, R.; Delgado, G. y PochuluM. (2006). Caracterización de las actividades de
Geometría que proponen los textos de Matemática.Revista Iberoamericana de
Educación.(39/1)
Bocco, M. y Canter, C. (2010). Errores en geometría: clasificación e incidencia en
un curso preuniversitario.Revista Iberoamericana de Educación.(53/2)
Bressan, A.; Bogisic, B. y Crego, K. (2007).Razones para enseñar geometría en la
EGB. Buenos Aires, Argentina: Novedades Educativas.
Brussseau, G. (2007).Iniciación al estudio de la teoría de las situaciones
didácticas.Buenos Aires, Argentina: Libros del Zorzal.
CANO, E. (2008) La evaluación por competencias en la educación superior.
Profesorado: Revista de currículum y formación del profesorado(12/3). Disponible
enhttp://www.ugr.es/~recfpro/Rev123.htmlPágina consultada en marzo de 2011.
CofréJorquera,A. yTapia Araya,L(2003)Cómodesarrollar el razonamiento
lógico y matemático.Editorial Universitaria. Chile.
De Souza Melo, S. (2009).Un análisis de los errores de los alumnos en clases
virtuales de geometría descriptiva bajo las teorías del desarrollo del pensamiento
geométrico y del concepto figural.Revista Iberoamericana de Educación.(51/1).
Diseño Curricular de educación Secundaria de la provincia de Córdoba (2011).
Disponible en:http://www.cba.gov.ar/imagenes/fotos/edu_d_c_2010_s.pdf. Página
consultada en marzo de 2011.

Revista de Investigaci?n Educativa Conect@2
Mayo Agosto 2011
A?oII, N?m. 4
89
Elola, N. y Toranzos, L. (2000) Evaluación Educativa: Una aproximación
conceptual. Buenos Aires. Disponible en: http://www.oei.es/calidad2/luis2.pdf.
Consultado el 31 de Julio del 2010.
Giménez Rodríguez, J. (1997).Evaluación en matemáticas. Una integración de
perspectivas.EditorialSíntesis. Madrid.
Godino, J.; Batanero, C. y Font, V (2003).Fundamentos de la enseñanza y
aprendizaje de la Matemática para maestros.Universidad de Granada. Disponible
en:
http://www.ugr.es/local/jgodino/edumat-maestros/
Godino, J.; Batanero, C. y Font, V (2007).The Onto-Semiotic Approach to
Research in Mathematics Education.The International Journal onMathematics
Education(39), 127-135.
Godino, J.; Recio, A.; Roa, R.; Ruiz, F. y Pareja, J. (2005).Criterios de diseño y
evaluación de situaciones didácticas basadas en el uso de medios informáticos
para el estudio de las matemáticas.Comunicaciones presentadas al IX Simposio
SEIEM-Córdoba, España.
Luelmo, M. (2001).Medir en Secundaria: algo más que fórmulas. Ponencia
presentada enX Jornadas para el aprendizaje y enseñanza de las matemáticas
(JAEM),727-737. Zaragoza, España.
Perez, S. y Guillén, G. (2008).Estudio exploratorio sobre la enseñanza de
contenidos geométricos y de medición en secundaria, Sociedad Española de
Investigación en Educación Matemática, SEIEM. Consultado el 2 Junio de 2009 en
http://dialnet.unirioja.es/servlet/oaiart?codigo=2748854
Radatz, H. (1979): Erroranalysis in mathematics education.Journal for Research
in Mathematics Education, 1979, Vol 10 (3), pp.163-172.

Revista de Investigaci?n Educativa Conect@2
Mayo Agosto 2011
A?oII, N?m. 4
90
Zapata Grajales, F. yCano Velásquez, N. (2008) Enseñanza de la magnitud Área.
Conferencia presentada en el 9º Encuentro Colombiano de Matemática Educativa
realizado en la ciudad de Valledupar, Colombia.
Tags