Prohibida su reproducción 77
Un satélite de telecomunicaciones de 5 000 kg de masa describe una órbita circular concéntrica con la Tierra
a 1200 km de su superficie. Calcula:
a. La velocidad orbital del satélite.
b. Su período de revolución.
Calcula la velocidad orbital y la altura sobre el ecuador
a la que debe situarse un satélite geoestacionario.
COMPRENSIÓN.
3.
¿Qué cuesta más, situar en órbita un satélite pe-
sado o uno ligero? Justifica tu respuesta.
4. ¿Podemos situar satélites geoestacionarios a
diferentes alturas sobre la superficie terrestre, o por el contrario, esta altura es fija e invariable? Justifica tu respuesta.
5.
Calcula la velocidad orbit al y el período de re-
volución de un satélite que describe órbitas de
8 500 km de radio alrededor de la Tierra.
6. Un objeto lanzado desde una nave espacial
queda en órbita circular alrededor de la Tierra con una velocidad de 2,52 ∙ 10
4
km/h. Calcula:
a. El radio de la órbita; b. El período de revolución.
El radio de la órbita es igual al radio de la Tierra más
la distancia del satélite a la superficie terrestre:
r = R
T
+ h = 6,37 ∙ 10
6
m + 1,2 ∙ 10
6
m = 7,57 ∙ 10
6
m
a. Calculamos la velocidad orbital del satélite:
— Calculamos la velocidad orbital:
—
Primero debemos hallar el radio de la órbita para
calcular la altura sobre la superficie de la Tierra, h :
— Calculamos la altura sobre la superficie de la Tie-
rra, h:
h = r - R
T
h = 4,26 ∙ 10
7
m - 6,37 ∙ 10
6
m
h = 3,62 ∙ 10
7
m
RESOLUCIÓN.
— Datos: Un satélite geoestacionario debe te-
ner un período de revolución igual al de rota-
ción de la Tierra alrededor de su propio eje.
T = 24 h = 86 400 s
Aplicamos las ecuaciones de la velocidad orbital
y del período de revolución para obtener un siste- ma de dos ecuaciones con dos incógnitas:
Al despejar r de la segunda ecuación y sus tituirla
en la primera, obtenemos:
b. Calculamos el período de revolución:
(masa y radio de la Tierra: 5,98 ∙ 10
24
kg; 6 370 km)
Solución
Solución
C
D
r =R
T+h =6,37 ⋅10
6
m +1,2 ⋅10
6
m =7,57 ⋅10
6
m
T
r
v
= =
⋅ ⋅
⋅
= ⋅
2
6 5 10
3π π2 7,57 10 m
7,3 10
m
s
s
6
3
,
v G
M
r
T
= = ⋅
⋅
⋅
⋅
⋅
−
6 67 10
11
,
N m
kg
5,98 10 kg
7,57 10
2
2
24
66
m
m/sv = ⋅7 3 10
3
,
h r R
h
h
T
=−
= ⋅ − ⋅
= ⋅
4 26 10 6 37 10
3 62 10
7 6
7
, ,
,
m m
m
r
T v
= =
⋅ ⋅
= ⋅
2
86 400 3 1 10
2
4 26 10
3
7
π π
,
s
m
s
m
v =
⋅ ⋅
⋅
⋅ ⋅
−
2 6,67 10
N m
kg
kg
s
2
π
11
2
24
5 98 10
86400
,
= ⋅
1
3
3
3 1 10v , m/s
r
T v
v
GM
T
T
= =
2
2
1
3
π
π
;
v G
M
r
T
r
v
T
=
=
2π
m = 5 000 kg
h = 1,2 ⋅10
6
m
R
T= 6,37 ⋅10
6
m
M
T= 5,98 ⋅10
24
kg
r =R
T+h =6,37 ⋅10
6
m +1,2 ⋅10
6
m =7,57 ⋅10
6
m
T
r
v
= =
⋅ ⋅
⋅
= ⋅
2
6 5 10
3π π2 7,57 10 m
7,3 10
m
s
s
6
3
,
v G
M
r
T
= = ⋅
⋅
⋅
⋅
⋅
−
6 67 10
11
,
N m
kg
5,98 10 kg
7,57 10
2
2
24
66
m
m/sv = ⋅7 3 10
3
,
h r R
h
h
T
=−
= ⋅ − ⋅
= ⋅
4 26 10 6 37 10
3 62 10
7 6
7
, ,
,
m m
m
r
T v
= =
⋅ ⋅
= ⋅
2
86 400 3 1 10
2
4 26 10
3
7
π π
,
s
m
s
m
v =
⋅ ⋅
⋅
⋅ ⋅
−
2 6,67 10
N m
kg
kg
s
2
π
11
2
24
5 98 10
86400
,
= ⋅
1
3
3
3 1 10v , m/s
r
T v
v
GM
T
T
= =
2
2
1
3
π
π
;
v G
M
r
T
r
v
T
=
=
2π
m =5 000 kg
h =1,2 ⋅10
6
m
R
T=6,37 ⋅10
6
m
M
T=5,98 ⋅10
24
kg
r =R
T+h =6,37 ⋅10
6
m +1,2 ⋅10
6
m =7,57 ⋅10
6
m
T
r
v
= =
⋅ ⋅
⋅
= ⋅
2
6 5 10
3π π2 7,57 10 m
7,3 10
m
s
s
6
3
,
v G
M
r
T
= = ⋅
⋅
⋅
⋅
⋅
−
6 67 10
11
,
N m
kg
5,98 10 kg
7,57 10
2
2
24
66
m
m/sv = ⋅7 3 10
3
,
h r R
h
h
T
=−
= ⋅ − ⋅
= ⋅
4 26 10 6 37 10
3 62 10
7 6
7
, ,
,
m m
m
r
T v
= =
⋅ ⋅
= ⋅
2
86 400 3 1 10
2
4 26 10
3
7
π π
,
s
m
s
m
v =
⋅ ⋅
⋅
⋅ ⋅
−
2 6,67 10
N m
kg
kg
s
2
π
11
2
24
5 98 10
86400
,
= ⋅
1
3
3
3 1 10v , m/s
r
T v
v
GM
T
T
= =
2
2
1
3
π
π
;
v G
M
r
T
r
v
T
=
=
2π
m =5 000 kg
h =1,2 ⋅10
6
m
R
T=6,37 ⋅10
6
m
M
T=5,98 ⋅10
24
kg
r =R
T+h =6,37 ⋅10
6
m +1,2 ⋅10
6
m =7,57 ⋅10
6
m
T
r
v
= =
⋅ ⋅
⋅
= ⋅
2
6 5 10
3π π2 7,57 10 m
7,3 10
m
s
s
6
3
,
v G
M
r
T
= = ⋅
⋅
⋅
⋅
⋅
−
6 67 10
11
,
N m
kg
5,98 10 kg
7,57 10
2
2
24
66
m
m/sv = ⋅7 3 10
3
,
h r R
h
h
T
=−
= ⋅ − ⋅
= ⋅
4 26 10 6 37 10
3 62 10
7 6
7
, ,
,
m m
m
r
T v
= =
⋅ ⋅
= ⋅
2
86 400 3 1 10
2
4 26 10
3
7
π π
,
s
m
s
m
v =
⋅ ⋅
⋅
⋅ ⋅
−
2 6,67 10
N m
kg
kg
s
2
π
11
2
24
5 98 10
86400
,
= ⋅
1
3
3
3 1 10v , m/s
r
T v
v
GM
T
T
= =
2
2
1
3
π
π
;
v G
M
r
T
r
v
T
=
=
2π
m = 5 000 kg
h = 1,2 ⋅10
6
m
R
T= 6,37 ⋅10
6
m
M
T= 5,98 ⋅10
24
kg
r =R
T+h =6,37 ⋅10
6
m +1,2 ⋅10
6
m =7,57 ⋅10
6
m
T
r
v
= =
⋅ ⋅
⋅
= ⋅
2
6 5 10
3π π2 7,57 10 m
7,3 10
m
s
s
6
3
,
v G
M
r
T
= = ⋅
⋅
⋅
⋅
⋅
−
6 67 10
11
,
N m
kg
5,98 10 kg
7,57 10
2
2
24
66
m
m/sv = ⋅7 3 10
3
,
h r R
h
h
T
=−
= ⋅ − ⋅
= ⋅
4 26 10 6 37 10
3 62 10
7 6
7
, ,
,
m m
m
r
T v
= =
⋅ ⋅
= ⋅
2
86 400 3 1 10
2
4 26 10
3
7
π π
,
s
m
s
m
v =
⋅ ⋅
⋅
⋅ ⋅
−
2 6,67 10
N m
kg
kg
s
2
π
11
2
24
5 98 10
86400
,
= ⋅
1
3
3
3 1 10v , m/s
r
T v
v
GM
T
T
= =
2
2
1
3
π
π
;
v G
M
r
T
r
v
T
=
=
2π
m =5 000 kg
h =1,2 ⋅10
6
m
R
T=6,37 ⋅10
6
m
M
T=5,98 ⋅10
24
kg
r =R
T+h =6,37 ⋅10
6
m +1,2 ⋅10
6
m =7,57 ⋅10
6
m
T
r
v
= =
⋅ ⋅
⋅
= ⋅
2
6 5 10
3π π2 7,57 10 m
7,3 10
m
s
s
6
3
,
v G
M
r
T
= = ⋅
⋅
⋅
⋅
⋅
−
6 67 10
11
,
N m
kg
5,98 10 kg
7,57 10
2
2
24
66
m
m/sv = ⋅7 3 10
3
,
h r R
h
h
T
=−
= ⋅ − ⋅
= ⋅
4 26 10 6 37 10
3 62 10
7 6
7
, ,
,
m m
m
r
T v
= =
⋅ ⋅
= ⋅
2
86 400 3 1 10
2
4 26 10
3
7
π π
,
s
m
s
m
v =
⋅ ⋅
⋅
⋅ ⋅
−
2 6,67 10
N m
kg
kg
s
2
π
11
2
24
5 98 10
86400
,
= ⋅
1
3
3
3 1 10v , m/s
r
T v
v
GM
T
T
= =
2
2
1
3
π
π
;
v G
M
r
T
r
v
T
=
=
2π
m =5 000 kg
h =1,2 ⋅10
6
m
R
T=6,37 ⋅10
6
m
M
T=5,98 ⋅10
24
kg
r =R
T+h =6,37 ⋅10
6
m +1,2 ⋅10
6
m =7,57 ⋅10
6
m
T
r
v
= =
⋅ ⋅
⋅
= ⋅
2
6 5 10
3π π2 7,57 10 m
7,3 10
m
s
s
6
3
,
v G
M
r
T
= = ⋅
⋅
⋅
⋅
⋅
−
6 67 10
11
,
N m
kg
5,98 10 kg
7,57 10
2
2
24
66
m
m/sv = ⋅7 3 10
3
,
h r R
h
h
T
=−
= ⋅ − ⋅
= ⋅
4 26 10 6 37 10
3 62 10
7 6
7
, ,
,
m m
m
r
T v
= =
⋅ ⋅
= ⋅
2
86 400 3 1 10
2
4 26 10
3
7
π π
,
s
m
s
m
v =
⋅ ⋅
⋅
⋅ ⋅
−
2 6,67 10
N m
kg
kg
s
2
π
11
2
24
5 98 10
86400
,
= ⋅
1
3
3
3 1 10v , m/s
r
T v
v
GM
T
T
= =
2
2
1
3
π
π
;
v G
M
r
T
r
v
T
=
=
2π
m =5 000 kg
h =1,2 ⋅10
6
m
R
T=6,37 ⋅10
6
m
M
T=5,98 ⋅10
24
kgProhibida su comercializaci?n