Flattening-the-Earth-with-map-projections.pdf

aida803774 37 views 103 slides Jun 13, 2024
Slide 1
Slide 1 of 103
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30
Slide 31
31
Slide 32
32
Slide 33
33
Slide 34
34
Slide 35
35
Slide 36
36
Slide 37
37
Slide 38
38
Slide 39
39
Slide 40
40
Slide 41
41
Slide 42
42
Slide 43
43
Slide 44
44
Slide 45
45
Slide 46
46
Slide 47
47
Slide 48
48
Slide 49
49
Slide 50
50
Slide 51
51
Slide 52
52
Slide 53
53
Slide 54
54
Slide 55
55
Slide 56
56
Slide 57
57
Slide 58
58
Slide 59
59
Slide 60
60
Slide 61
61
Slide 62
62
Slide 63
63
Slide 64
64
Slide 65
65
Slide 66
66
Slide 67
67
Slide 68
68
Slide 69
69
Slide 70
70
Slide 71
71
Slide 72
72
Slide 73
73
Slide 74
74
Slide 75
75
Slide 76
76
Slide 77
77
Slide 78
78
Slide 79
79
Slide 80
80
Slide 81
81
Slide 82
82
Slide 83
83
Slide 84
84
Slide 85
85
Slide 86
86
Slide 87
87
Slide 88
88
Slide 89
89
Slide 90
90
Slide 91
91
Slide 92
92
Slide 93
93
Slide 94
94
Slide 95
95
Slide 96
96
Slide 97
97
Slide 98
98
Slide 99
99
Slide 100
100
Slide 101
101
Slide 102
102
Slide 103
103

About This Presentation

Info about GIS


Slide Content

© Donald Boyes, Department of Geography and Planning, Universit y of Toronto 1
Purpose of map projections Purpose of map projections

© Donald Boyes, Department of Geography and Planning, Universit y of Toronto 2
Selecting a coordinate system

© Donald Boyes, Department of Geography and Planning, Universit y of Toronto 3
Globe:

Three‐dimensional (3D)

Expensive, cumbersome, no detail, but no distortion
Map:

Two‐dimensional (2D)

Easier to measure distance, area, direction

Can show more detail

Easy to work with, portable, cheaper

Distortion.
Globe vs. Map

© Donald Boyes, Department of Geography and Planning, Universit y of Toronto 4
http://thetruesize.com

© Donald Boyes, Department of Geography and Planning, Universit y of Toronto 5
How projections work How projections work

© Donald Boyes, Department of Geography and Planning, Universit y of Toronto 6
What is a map projection?
Transformation of 3D Earth to a 2D map

© Donald Boyes, Department of Geography and Planning, Universit y of Toronto 7
Goal: Flat map with scale of 1:100,000,000
1:100,000,000
Principal scale
Full‐sized Earth
First, imagine that the Earth 
has been shrunk to the desired scale
Can use either 
sphere or ellipsoid
Can use either 
sphere or ellipsoid
Reference 
Globe

© Donald Boyes, Department of Geography and Planning, Universit y of Toronto 8
Hypothetical
Still 3D
Principal scale =
6.378 cm
Reference globe
1:100,000,000
Reference globe radius
Earth’s radius
637813700 cm
or 1:100,000,000
= 0.00000001

© Donald Boyes, Department of Geography and Planning, Universit y of Toronto 9
Transfer all points from 3D globe to 2D map…
1:100,000,000 1:100,000,000
Reference Globe (3D) Flat Map (2D)

© Donald Boyes, Department of Geography and Planning, Universit y of Toronto 10
Distances are distorted
1:100,000,000 1:100,000,000
Reference Globe (3D) Flat Map (2D)

© Donald Boyes, Department of Geography and Planning, Universit y of Toronto 11
From curved surface to flat
To flatten globe, must stretch, tear, or distort…
reference
globe
paper
Map distance
(shrunk, or distorted)
Actual distance
(based on Melita and Kopp, 2004)

© Donald Boyes, Department of Geography and Planning, Universit y of Toronto 12
"Not only is it easy to lie with maps, it's 
essential.  To portray meaningful relationships 
for a complex, three‐dimensional world on a flat 
sheet of paper or video screen, a map must 
distort reality" 
Mark Monmonier, How to Lie with Maps, 1996 
How to lie with maps...

© Donald Boyes, Department of Geography and Planning, Universit y of Toronto 13
Associating points from 3D to 2D Associating points from 3D to 2D

© Donald Boyes, Department of Geography and Planning, Universit y of Toronto 14 Associating points

© Donald Boyes, Department of Geography and Planning, Universit y of Toronto 15
Equator
Draw a line from the equator to the pole…

© Donald Boyes, Department of Geography and Planning, Universit y of Toronto 16
Rotate 90°
Equator

© Donald Boyes, Department of Geography and Planning, Universit y of Toronto 17
Rotate 90°

© Donald Boyes, Department of Geography and Planning, Universit y of Toronto 18
Projection from sphere to plane

© Donald Boyes, Department of Geography and Planning, Universit y of Toronto 19
Cylindrical Equal Area
Should be equal,
but are not
Should not be equal,
but are

© Donald Boyes, Department of Geography and Planning, Universit y of Toronto 20
Adjust distances

© Donald Boyes, Department of Geography and Planning, Universit y of Toronto 21
Equirectangular projection

© Donald Boyes, Department of Geography and Planning, Universit y of Toronto 22

We adjusted points along a meridian

Same can be done along a parallel 

Can adjust both, and in different ways.
Two perpendicular directions

© Donald Boyes, Department of Geography and Planning, Universit y of Toronto 23
Graticule: indicates how projections work

© Donald Boyes, Department of Geography and Planning, Universit y of Toronto 24
Projection class
(developable surfaces)
Projection class
(developable surfaces)

© Donald Boyes, Department of Geography and Planning, Universit y of Toronto 25 Projection classes
Cylindrical
ConicPlanar
(adapted from Lo and Yeung, 2006)

© Donald Boyes, Department of Geography and Planning, Universit y of Toronto 26
Standard line and scale factor Standard line and scale factor

© Donald Boyes, Department of Geography and Planning, Universit y of Toronto 27
Standard point or line
Cylindrical
ConicPlanar
(Melita and Kopp, 2004; Lo and Yeung, 2006)
Where globe 
touches 
developable surface

© Donald Boyes, Department of Geography and Planning, Universit y of Toronto 28
Hypothetical
Still 3D
Principal scale =
6.378 cm
Reference globe
1:100,000,000
Reference globe radius
Earth’s radius
637813700 cm
or 1:100,000,000
= 0.00000001

© Donald Boyes, Department of Geography and Planning, Universit y of Toronto 29
Scale factor
Local scale
Principal scale
1/100,000,000
1/100,000,000
SF =
SF =
SF = 1 at the standard line
Where will the local scale
be the same as the principal scale? 
i.e., where is there no distortion?
What happens to the SF as you 
move away from the standard line?
Scale on
ref. globe
Scale on
map
SF=2
(Kennedy et al., 2004)
SF > 1
SF > 1
SF=1
SF > 1
SF > 1

© Donald Boyes, Department of Geography and Planning, Universit y of Toronto 30
Scale factor
No distortion (3D)
Scale factor varies
1:100,000,000
(at all locations)
1:100,000,000 
(only along standard line)
2D Projected Map
3D Reference Globe
1/50,000,000
1/100,000,000
SF =
0.00000002
0.00000001
=
2.0 =
(Kimerlinget al., 2009)

© Donald Boyes, Department of Geography and Planning, Universit y of Toronto 31
Variable scale bar
http://en.wikipedia.org/wiki/Mercator_projection

© Donald Boyes, Department of Geography and Planning, Universit y of Toronto 32
1:500,000
Representative fraction
(absolute scale) 
Bar scale
“one inch to one mile”
Verbal scale
0 50 100 200 300 400 Km
> 1:250,000

© Donald Boyes, Department of Geography and Planning, Universit y of Toronto 33
Projection case Projection case

© Donald Boyes, Department of Geography and Planning, Universit y of Toronto 34
Tangent case
Cylindrical
ConicPlanar
(adapted from Lo and Yeung, 2006)Scale factor = 1
at standard lines
How can we 
reduce distortion?

© Donald Boyes, Department of Geography and Planning, Universit y of Toronto 35
Secant case
(adapted from Lo and Yeung, 2006)
Cylindrical
ConicPlanar
Scale factor = 1
at standard lines

© Donald Boyes, Department of Geography and Planning, Universit y of Toronto 36
Scale factor with two standard lines
Scale factor > 1
Scale factor = 1
Scale factor < 1

© Donald Boyes, Department of Geography and Planning, Universit y of Toronto 37
Visualizing the change in scale factor
(adapted from Kimerlinget al., 2009)
Reference globe
Mercator projection

© Donald Boyes, Department of Geography and Planning, Universit y of Toronto 38
Rule of thumb: match region to projection
where distortion is minimized
(adapted from Lo and Yeung, 2006)
Cylindrical
ConicPlanar
Tropical
Temperate
Polar

© Donald Boyes, Department of Geography and Planning, Universit y of Toronto 39
Projection aspect Projection aspect

© Donald Boyes, Department of Geography and Planning, Universit y of Toronto 40
Aspect
(adapted from Lo and Yeung, 2006)
Normal
SF > 1
SF > 1
SF > 1
SF > 1 Transverse Oblique

© Donald Boyes, Department of Geography and Planning, Universit y of Toronto 41
Aspect
(adapted from Kimerlinget al., 2006)
Polar
Equatorial Oblique

© Donald Boyes, Department of Geography and Planning, Universit y of Toronto 42
http://www.nrcan.gc.ca/earth‐sciences/geography/atlas‐canada/wa ll‐maps/16870

© Donald Boyes, Department of Geography and Planning, Universit y of Toronto 43
http://www.nrcan.gc.ca/earth‐sciences/geography/atlas‐canada/wa ll‐maps/16870k

© Donald Boyes, Department of Geography and Planning, Universit y of Toronto 44
http://www.nrcan.gc.ca/earth‐sciences/geography/atlas‐canada/wa ll‐maps/16870

© Donald Boyes, Department of Geography and Planning, Universit y of Toronto 45
http://www.nrcan.gc.ca/earth‐sciences/geography/atlas‐canada/wa ll‐maps/16870k

© Donald Boyes, Department of Geography and Planning, Universit y of Toronto 46
Let’s all hate Toronto

© Donald Boyes, Department of Geography and Planning, Universit y of Toronto 47
Projection central meridian Projection central meridian

© Donald Boyes, Department of Geography and Planning, Universit y of Toronto 48
Central meridian
(adapted from Lo and Yeung, 2006)

© Donald Boyes, Department of Geography and Planning, Universit y of Toronto 49
Central meridian: ‐100
Central meridian

© Donald Boyes, Department of Geography and Planning, Universit y of Toronto 50
Central meridian: ‐75
Poor choice of central meridian…

© Donald Boyes, Department of Geography and Planning, Universit y of Toronto 51
Poor choice of central meridian…
http://www.greenlandsc.com/en/World_America.aspx`

© Donald Boyes, Department of Geography and Planning, Universit y of Toronto 52
Central meridian set to China

© Donald Boyes, Department of Geography and Planning, Universit y of Toronto 53
Tissot’s indicatrix Tissot’s indicatrix

© Donald Boyes, Department of Geography and Planning, Universit y of Toronto 54
Observing distortion

© Donald Boyes, Department of Geography and Planning, Universit y of Toronto 55
Visualizing the change in scale factor
(adapted from Kimerlinget al., 2009)
Reference globe
Mercator projection

© Donald Boyes, Department of Geography and Planning, Universit y of Toronto 56

Draw infinitely small circles on 
reference globe

On globe, they are circles

When projected, they are 
distorted in shape and/or size
Tissot’s Indicatrix

© Donald Boyes, Department of Geography and Planning, Universit y of Toronto 57
Tissot’s Indicatrix: Cylindrical Equal Area

© Donald Boyes, Department of Geography and Planning, Universit y of Toronto 58
Meridians straightened out
SF < 1
SF > 1

© Donald Boyes, Department of Geography and Planning, Universit y of Toronto 59
Area = πr
2
= πab
Tissot’sIndicatrix
a
b
a= 1
b= 1
a
x
b= 1
This is on the original
reference globe (3D)
aandb
arescale factors (SF)

© Donald Boyes, Department of Geography and Planning, Universit y of Toronto 60
Shapes distorted
a
b
Area = πr
2
= πab
a= 1.25  
b= 0.8   
a
x
b= 1     
Since ax b= 1, 
2D map is equal‐area
but a≠ b
so map is not conformal

© Donald Boyes, Department of Geography and Planning, Universit y of Toronto 61
Tissot’s Indicatrix: Mercator

© Donald Boyes, Department of Geography and Planning, Universit y of Toronto 62
Horizontal and vertical scale factors
SF > 1
SF > 1

© Donald Boyes, Department of Geography and Planning, Universit y of Toronto 63
Sizes distorted
a
b
Area = πr
2
= πab
a= 1.25  
b= 1.25  
a
x
b= 1.5625
Since ax b≠ 1, 
2D map is not equal‐area
but a= b
so map is conformal

© Donald Boyes, Department of Geography and Planning, Universit y of Toronto 64
Area vs. Shape
You can preserve area or shape, but not both
a = bor a
x
b= 1
You can preserve area or shape, but not both
a = bor a
x
b= 1
Area
Shape

© Donald Boyes, Department of Geography and Planning, Universit y of Toronto 65
SF = 1
SF = 1
Standard 
line
SF > 1
Equidistant projection Equidistant projection

© Donald Boyes, Department of Geography and Planning, Universit y of Toronto 66
Equidistant projection
SF = 1
SF = 1
Standard 
line
SF > 1

© Donald Boyes, Department of Geography and Planning, Universit y of Toronto 67
Great circles and rhumblines Great circles and rhumblines

© Donald Boyes, Department of Geography and Planning, Universit y of Toronto 68
Equidistant projection
SF = 1
SF = 1

© Donald Boyes, Department of Geography and Planning, Universit y of Toronto 69
Azimuth
N
45°
A
B

© Donald Boyes, Department of Geography and Planning, Universit y of Toronto 70
Great circle route
New York
London

© Donald Boyes, Department of Geography and Planning, Universit y of Toronto 71
Great circle route
New York
London

© Donald Boyes, Department of Geography and Planning, Universit y of Toronto 72
Angles are all different

© Donald Boyes, Department of Geography and Planning, Universit y of Toronto 73
Great circle vs. Rhumb line
New York New York
London London

© Donald Boyes, Department of Geography and Planning, Universit y of Toronto 74
Rhumb lines are longer (really!)

© Donald Boyes, Department of Geography and Planning, Universit y of Toronto 75
Series of rhumb lines
New York New York
London London

© Donald Boyes, Department of Geography and Planning, Universit y of Toronto 76
Projection distance and direction Projection distance and direction

© Donald Boyes, Department of Geography and Planning, Universit y of Toronto 77
Distance, direction, and projection
B
A
B A
B
A
Straight line and shortest distance (i.e., great circle)?
Rhumb line, 
not great circle
Rhumb line, 
not great circle

© Donald Boyes, Department of Geography and Planning, Universit y of Toronto 78
Direction and projection
B A
B
A
B A
B
A

© Donald Boyes, Department of Geography and Planning, Universit y of Toronto 79
Azimuthal projection centered on New York
New York New York
B A
B
A
B A
B
A

© Donald Boyes, Department of Geography and Planning, Universit y of Toronto 80
None of the above: Compromise

© Donald Boyes, Department of Geography and Planning, Universit y of Toronto 81
Grid coordinate systems and UTM Grid coordinate systems and UTM

© Donald Boyes, Department of Geography and Planning, Universit y of Toronto 82 Mercator projection

© Donald Boyes, Department of Geography and Planning, Universit y of Toronto 83
Transverse Mercator
(adapted from Lo and Yeung, 2006)
Normal
SF > 1
SF > 1
SF > 1
SF > 1 Transverse Oblique

© Donald Boyes, Department of Geography and Planning, Universit y of Toronto 84
One UTM zone (6°wide)

© Donald Boyes, Department of Geography and Planning, Universit y of Toronto 85
Rotate cylinder, create new zone
(adapted from Lo and Yeung, 2006)

© Donald Boyes, Department of Geography and Planning, Universit y of Toronto 86
UTM zones

© Donald Boyes, Department of Geography and Planning, Universit y of Toronto 87
Projections and coordinate systems
Projected
coordinate system
(2D: UTM)
Projected
coordinate system
(2D: UTM)

© Donald Boyes, Department of Geography and Planning, Universit y of Toronto 88
Plane rectangular coordinate system
X
Y
How do we describe
where this is?
12345
1
2
3
4
5
0
x
y
(4,3)
Origin
(‐4,‐3)(‐4,3)
(4,‐3)
‐5
‐4
‐3
‐2
‐1
‐5 ‐4 ‐3 ‐2 ‐1
First 
Quadrant
Second 
Quadrant
Third 
Quadrant
Fourth 
Quadrant

© Donald Boyes, Department of Geography and Planning, Universit y of Toronto 89
Staying positive!
X
Y
12345
1
2
3
4
5
0
‐5
‐4
‐3
‐2
‐1
‐5 ‐4 ‐3 ‐2 ‐1

© Donald Boyes, Department of Geography and Planning, Universit y of Toronto 90
UTM coordinate grid

© Donald Boyes, Department of Geography and Planning, Universit y of Toronto 91
Where origin would normally be…
0,0

© Donald Boyes, Department of Geography and Planning, Universit y of Toronto 92
False easting
500000mE, 0mN
0mE, 0mN

© Donald Boyes, Department of Geography and Planning, Universit y of Toronto 93
North vs. South hemispheres
0mE, 0mN
0mE, 10,000,000mN
Easting
Northing
0mE, 0mN
0mE, 10,000,000mN
Easting
Northing

© Donald Boyes, Department of Geography and Planning, Universit y of Toronto 94
Geographic vs. UTM coordinate systems
Grid north

© Donald Boyes, Department of Geography and Planning, Universit y of Toronto 95
National Topographic System (NTS) map
http://geogratis.gc.ca/api/en/nrcan‐rncan/ess‐sst/cb864dc7‐25a1 ‐5136‐57f4‐c095ce1c6a6d.html

© Donald Boyes, Department of Geography and Planning, Universit y of Toronto 96
UTM coordinates
621,000mE 4,845,000mN, Zone 17 North 621,000mE 4,845,000mN, Zone 17 North
EastingNorthing Northing

© Donald Boyes, Department of Geography and Planning, Universit y of Toronto 97
UTM coordinates
CN Tower:
630,084mE, 4,833,438mN, Zone 17 North
CN Tower:
630,084mE, 4,833,438mN, Zone 17 North

© Donald Boyes, Department of Geography and Planning, Universit y of Toronto 98

© Donald Boyes, Department of Geography and Planning, Universit y of Toronto 99
Projections and ArcGIS Projections and ArcGIS

© Donald Boyes, Department of Geography and Planning, Universit y of Toronto 100
Projected Coordinate System

© Donald Boyes, Department of Geography and Planning, Universit y of Toronto 101
ArcMap and coordinate systems
Menu and toolbars
Table of 
contents
ArcCatalog
Geographic
Geographic
and
Projected
Mercator
Data frame
Mercator
Robinson
“on the fly”

© Donald Boyes, Department of Geography and Planning, Universit y of Toronto 102

Data can be saved to new file in new 
projection

Coordinates in the data file are recalculated 
and adjusted to match the new projection

You can’t always transform it “back” to exactly 
the same coordinates due to rounding errors.
Projection changes to data files

© Donald Boyes, Department of Geography and Planning, Universit y of Toronto 103

Exchange GIS data in a 3D geographic 
coordinate system, not a 2D projected 
coordinate system
To avoid errors…
Tags