FMI Saeed Mirzaye Sirus Hoseinzadeh Dr: Mohammad Sharifi 2015
10 Pad Flap The Fullbore Formation MicroImager (FMI) instrument E lectrical method used in boreholes to image bedding and fractures around the perimeter of the borehole Measure the borehole size Measurement in the water-based drilling fluid H igh resolution picture based on resistivity contrasts from the borehole wall Vertical resolution, 5 mm
Data processing Schlumberger- Techlog Software Speed correction Pads image creation Buttons harmonisation Histogram equalisation Image processing 12 RAW data PROCESSED data
Speed Correction
Image Equalization
A comparison between a static image (left) and a dynamic image (right). The dynamic image was processed using a 5-ft (1.5-m) sliding window. Note the better appearance of the finely laminated beds and the truncation (T) surface. North (N) on the images refers to true north. Also, the image shows one bedding plane being picked. After Knight (1999) in Hurley (2004).
Applications
Structural analysis and modeling 3D near-wellbore and interwell structural modeling Structural cross sections Detection and determination of faults, folds, and unconformities True, accurate structural dip in almost any formation Naturally fractured reservoir characterization and modeling Discrete fracture network ( DFN ) modeling Direct visual quantification of fracture orientation and density Quantification of fracture aperture and fracture porosity
Secondary porosity evaluation in carbonate and igneous reservoirs Quantification of matrix and vuggy fractions of porosity Partitioning of isolated, connected, and fracture-connected vuggy porosity Direct visual identification of macroporosity and nonporous nodules Estimation of permeability and variable cementation exponent m Thin-bed detection and evaluation Layer delineation for high-resolution deterministic petrophysical evaluation Fast quantification of interval net-to-gross ratio and net pay Direct visualization of beds down to millimeter scale
Reservoir characterization workflow Direct visual or automatic textural classification of facies and rock types Realistic population of reservoir bodies with petrophysical parameters Recognition of anisotropy, permeability barriers, and permeability paths Sedimentology and sequence stratigraphy Deterministic or stochastic modeling of reservoir bodies Definition and characterization of sedimentary bodies and their boundaries Qualitative vertical profiles of grain size and stacking pattern Paleocurrent directions
Geomechanics Determination of principal stress directions Calibration of mechanical earth model ( MEM ) Mud weight selection Complement to coring and formation tester programs Depth matching and orientation for whole cores Reservoir description for intervals not cored Information about the reservoir before core analysis is available Depth matching for sidewall core samples and wireline formation tester
Dips Dips show up as sinusoidal features on an FMI Image Colors represent different micro- resistivities If one assumes fractures to be planar features and the wellbore to be cylindrical then the unwrapping of the cylindrical image will show fracture crossing the wellbore as sinusoids
Dips
Dip Calculation h Diam = ATan ( h / Diam ) = Dip Angle h Circumference (Known Diameter)
شکستگی ها پدیده های صفحه ای با گسترش نسبتا زیاد هستند که دیواره چاه را قطع می کنند. شکستگی ها بسته به نوع آنها،باز یا پرشده، تباین فیزیکی شدیدی با زمینه سازند دارند که در لاگ های تصویرگر قابل شناسایی هستند . شکستگی های باز به خاطر پر شدن با گل حفاری رسانا، اثر تیره و شکستگی های پر شده اثر روشن دارند این تباین رنگی مبنای تشخیص شکستگی در لاگهای تصویرگر می باشد شکستگی ها پدیده های صفحه ای ، باریک و شیب دار هستند که مبنای تشخیص آنها از لایه بندی است
Fracture morphologic types.
DIFs are observed as narrow well defined conductive features separated by 180º and oriented sub-parallel to the borehole axis. (a) DIFs are oriented towards 010ºN and 190ºN, indicating an approximately N-S maximum horizontal stress orientation. (b) DIFs are oriented towards 040ºN and 220ºN, indicating an approximately NE-SW maximum horizontal stress orientation. (c) DIFs are oriented towards 045ºN and 225ºN. Furthermore, breakouts are also observed co-incident with the DIFs. Both the breakouts and DIFs indicate an approximately NE-SW maximum horizontal stress orientation
Drilling induced fractures 38 Depth (m)
Washout of Shale at Top of Fluvial Channel Sand
Dip histogram of all conductive (open) fractures in the Gorgas #1 well. Bidirectional rose diagram showing the density
Dip histogram of all resistive (healed) fractures in the Gorgas #1 well. Bidirectional rose diagram showing the density
Why the knowledge of the stress field is important? Hydraulic fracturing of unconventional HC reservoirs Monitoring the well to maintain its stability Tectonic researches
Borehole deformations The Borehole Breakout (BO) and the Drilling induced tensile fractures are special kind s of drill-hole failure s Compressive borehole breakouts form in the area of maximum circumferential stress, which in vertical wells is found at the azimuth of Sh min Tensile failure forms 90° from bore hole breakouts in the direction of the m aximum horizontal stress (S H m ax )
شناسایی تخلخل حفره ای در لاگ FMI برخلاف شکستگی ها که پدیده های صفحه ای هستند،تخلخل های حفره ای پدیده های بی شکل هستند که کمابیش شبیه دایره هستند که در سطح لاگ تصویرگر پراکنده اند. تخلخل های خفره ای منافذ بزرگی هستند که توسط گل رسانا پر می شوند گل رسانایی الکتریکی بسیار بالایی نسبت به ماتریکس سازند دارد
Vuggy rock
1,lamination 2,bedding
inverse/reverse grading conglomerates
massive bed convolute bedding (slump)
water escape structure sand injection
Sedimentological features 54 Depth (m) 0.5 m Fractured zone Vuggy rock Bedding surfaces
calcite cemented nodule
Deformation of soft sediment leading to convolute bedding
Great Contorted Beds in Fluvial Sandstone, Probably Reducing Reservoir Quality
Portion of the FMI log across another fluvial channel sand with great contorted bedding
Training Workshop for Imaging Tools 60 Porosity Distribution over 1.2 inch Window 192 Porosity Channels (0.1”, 0.3”, 0.6”, 1’….. Sampling rate) FMI Porosity ( f ) FMI = ( f ) ext [LLs * Ci] 1/m Secondary Porosity f Total = f Matrix + f Vugs / Mouldic + f Fractures
25 25 25 10 8 6 4 2 0 5 10 15 20 25 30 Frequency Porosity Distribution (pu) Unimodal Porosity Distribution (Homogeneous Carbonates)