Fmi log presentation

9,369 views 65 slides Nov 12, 2015
Slide 1
Slide 1 of 65
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30
Slide 31
31
Slide 32
32
Slide 33
33
Slide 34
34
Slide 35
35
Slide 36
36
Slide 37
37
Slide 38
38
Slide 39
39
Slide 40
40
Slide 41
41
Slide 42
42
Slide 43
43
Slide 44
44
Slide 45
45
Slide 46
46
Slide 47
47
Slide 48
48
Slide 49
49
Slide 50
50
Slide 51
51
Slide 52
52
Slide 53
53
Slide 54
54
Slide 55
55
Slide 56
56
Slide 57
57
Slide 58
58
Slide 59
59
Slide 60
60
Slide 61
61
Slide 62
62
Slide 63
63
Slide 64
64
Slide 65
65

About This Presentation

fmi log is an image log


Slide Content

In the Name of God

FMI Saeed Mirzaye Sirus Hoseinzadeh Dr: Mohammad Sharifi 2015

10 Pad Flap The Fullbore Formation MicroImager (FMI) instrument E lectrical method used in boreholes to image bedding and fractures around the perimeter of the borehole Measure the borehole size Measurement in the water-based drilling fluid H igh resolution picture based on resistivity contrasts from the borehole wall Vertical resolution, 5 mm

Data processing Schlumberger- Techlog Software Speed correction Pads image creation Buttons harmonisation Histogram equalisation Image processing 12 RAW data PROCESSED data

Speed Correction

Image Equalization

A comparison between a static image (left) and a dynamic image (right). The dynamic image was processed using a 5-ft (1.5-m) sliding window. Note the better appearance of the finely laminated beds and the truncation (T) surface. North (N) on the images refers to true north. Also, the image shows one bedding plane being picked. After Knight (1999) in Hurley (2004).

Applications

Structural analysis and modeling 3D near-wellbore and interwell structural modeling Structural cross sections Detection and determination of faults, folds, and unconformities True, accurate structural dip in almost any formation Naturally fractured reservoir characterization and modeling Discrete fracture network ( DFN ) modeling Direct visual quantification of fracture orientation and density Quantification of fracture aperture and fracture porosity

Secondary porosity evaluation in carbonate and igneous reservoirs Quantification of matrix and vuggy fractions of porosity Partitioning of isolated, connected, and fracture-connected vuggy porosity Direct visual identification of macroporosity and nonporous nodules Estimation of permeability and variable cementation exponent m Thin-bed detection and evaluation Layer delineation for high-resolution deterministic petrophysical evaluation Fast quantification of interval net-to-gross ratio and net pay Direct visualization of beds down to millimeter scale

Reservoir characterization workflow Direct visual or automatic textural classification of facies and rock types Realistic population of reservoir bodies with petrophysical parameters Recognition of anisotropy, permeability barriers, and permeability paths Sedimentology and sequence stratigraphy Deterministic or stochastic modeling of reservoir bodies Definition and characterization of sedimentary bodies and their boundaries Qualitative vertical profiles of grain size and stacking pattern Paleocurrent directions

Geomechanics Determination of principal stress directions Calibration of mechanical earth model ( MEM ) Mud weight selection Complement to coring and formation tester programs Depth matching and orientation for whole cores Reservoir description for intervals not cored Information about the reservoir before core analysis is available Depth matching for sidewall core samples and wireline formation tester

Dips Dips show up as sinusoidal features on an FMI Image Colors represent different micro- resistivities If one assumes fractures to be planar features and the wellbore to be cylindrical then the unwrapping of the cylindrical image will show fracture crossing the wellbore as sinusoids

Dips

Dip Calculation h  Diam  = ATan ( h / Diam ) = Dip Angle h Circumference (Known Diameter)

شکستگی ها پدیده های صفحه ای با گسترش نسبتا زیاد هستند که دیواره چاه را قطع می کنند. شکستگی ها بسته به نوع آنها،باز یا پرشده، تباین فیزیکی شدیدی با زمینه سازند دارند که در لاگ های تصویرگر قابل شناسایی هستند . شکستگی های باز به خاطر پر شدن با گل حفاری رسانا، اثر تیره و شکستگی های پر شده اثر روشن دارند این تباین رنگی مبنای تشخیص شکستگی در لاگهای تصویرگر می باشد شکستگی ها پدیده های صفحه ای ، باریک و شیب دار هستند که مبنای تشخیص آنها از لایه بندی است

Fracture morphologic types.

DIFs are observed as narrow well defined conductive features separated by 180º and oriented sub-parallel to the borehole axis. (a) DIFs are oriented towards 010ºN and 190ºN, indicating an approximately N-S maximum horizontal stress orientation. (b) DIFs are oriented towards 040ºN and 220ºN, indicating an approximately NE-SW maximum horizontal stress orientation. (c) DIFs are oriented towards 045ºN and 225ºN. Furthermore, breakouts are also observed co-incident with the DIFs. Both the breakouts and DIFs indicate an approximately NE-SW maximum horizontal stress orientation

Drilling induced fractures 38 Depth (m)

Washout of Shale at Top of Fluvial Channel Sand

Dip histogram of all conductive (open) fractures in the Gorgas #1 well. Bidirectional rose diagram showing the density

Dip histogram of all resistive (healed) fractures in the Gorgas #1 well. Bidirectional rose diagram showing the density

Why the knowledge of the stress field is important? Hydraulic fracturing of unconventional HC reservoirs Monitoring the well to maintain its stability Tectonic researches

Borehole deformations The Borehole Breakout (BO) and the Drilling induced tensile fractures are special kind s of drill-hole failure s Compressive borehole breakouts form in the area of maximum circumferential stress, which in vertical wells is found at the azimuth of Sh min Tensile failure forms 90° from bore hole breakouts in the direction of the m aximum horizontal stress (S H m ax )

شناسایی تخلخل حفره ای در لاگ FMI برخلاف شکستگی ها که پدیده های صفحه ای هستند،تخلخل های حفره ای پدیده های بی شکل هستند که کمابیش شبیه دایره هستند که در سطح لاگ تصویرگر پراکنده اند. تخلخل های خفره ای منافذ بزرگی هستند که توسط گل رسانا پر می شوند گل رسانایی الکتریکی بسیار بالایی نسبت به ماتریکس سازند دارد

Vuggy rock

1,lamination 2,bedding

inverse/reverse grading conglomerates

massive bed convolute bedding (slump)

water escape structure sand injection

Sedimentological features 54 Depth (m) 0.5 m Fractured zone Vuggy rock Bedding surfaces

calcite cemented nodule

Deformation of soft sediment leading to convolute bedding

Great Contorted Beds in Fluvial Sandstone, Probably Reducing Reservoir Quality

Portion of the FMI log across another fluvial channel sand with great contorted bedding

Training Workshop for Imaging Tools 60 Porosity Distribution over 1.2 inch Window 192 Porosity Channels (0.1”, 0.3”, 0.6”, 1’….. Sampling rate) FMI Porosity ( f ) FMI = ( f ) ext [LLs * Ci] 1/m Secondary Porosity f Total = f Matrix + f Vugs / Mouldic + f Fractures

25 25 25 10 8 6 4 2 0 5 10 15 20 25 30 Frequency Porosity Distribution (pu) Unimodal Porosity Distribution (Homogeneous Carbonates)

Thanks for your attention
Tags