Formal Logic - Lesson 4 - Tautology, Contradiction and Contingency

5,516 views 26 slides Apr 13, 2020
Slide 1
Slide 1 of 26
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26

About This Presentation

Lecture / Presentation in Discrete Structure I


Slide Content

z
FORMAL LOGIC
Discrete Structures I
FOR-IAN V. SANDOVAL

z
Lesson 4
TAUTOLOGY, CONTRADICTION
AND CONTINGENCY
Source: Google Images

z
LEARNING OBJECTIVES
❑Distinguish classes of compound statement

z
TAUTOLOGY
❑acompoundstatementthatistrueforallpossible
combinationofthetruthvaluesofthepropositional
variablesalsocalledlogicallytrue.
❑i.e.(~p^q)→q
p q ~p ~p ^ q (~p ^ q ) →q
T T F F T
T F F F T
F T T T T
F F T F T

z
CONTRADICTION
❑acompoundstatementthatisfalseforallpossible
combinationofthetruthvaluesofthepropositional
variablesalsocalledlogicallyfalseorabsurdity.
❑i.e.(~pvq)⊕(p→q)
p q ~p~ p v q p →q (~ p v q ) ⊕(p →q )
TTF T T F
TFF F F F
FTT T T F
FFT T T F

z
CONTINGENCY
❑acompoundstatementthatcanbeeithertrueoffalse,
dependingonthetruthvaluesofthepropositionalvariables
areneitheratautologynoracontradiction..
❑i.e.(p→q)^(p→~q)
p q p →q ~q p →~q (p →q ) ^ (p →~q )
TT T F F F
TF F T T F
FT T F T T
FF T T T T

z
TAUTOLOGY, CONTRADICTION & CONTINGENCY
❑EnrichmentExercise
Constructthetruthtableofthefollowingand
determinewhetherthecompoundstatementisatautology,
contradictionandcontingency.
1.p⊕(~p↔q)
2.[r^(p→q)]→q
3.p→(q→r)

z
TAUTOLOGY, CONTRADICTION & CONTINGENCY
1.p⊕(~p↔q)
p q
T T
T F
F T
F F

z
TAUTOLOGY, CONTRADICTION & CONTINGENCY
1.p⊕(~p↔q)
p q ~p
T T F
T F F
F T T
F F T

z
TAUTOLOGY, CONTRADICTION & CONTINGENCY
1.p⊕(~p↔q)
p q ~p (~p ↔ q)
T T F F
T F F T
F T T T
F F T F

z
TAUTOLOGY, CONTRADICTION & CONTINGENCY
1.p⊕(~p↔q)
p q ~p (~p ↔ q)p ⊕(~p ↔q)
T T F F T
T F F T F
F T T T T
F F T F F
Therefore,p⊕(~p↔q)iscontingency.

z
TAUTOLOGY, CONTRADICTION & CONTINGENCY
2.[r^(p→q)]→q
p q r
TTT
TTF
TFT
TFF
FTT
FTF
FFT
FFF

z
TAUTOLOGY, CONTRADICTION & CONTINGENCY
2.[r^(p→q)]→q
p q rp →q
TTT T
TTF T
TFT F
TFF F
FTT T
FTF T
FFT T
FFF T

z
TAUTOLOGY, CONTRADICTION & CONTINGENCY
2.[r^(p→q)]→q
p q rp →qr ^ (p →q)
TTT T T
TTF T F
TFT F F
TFF F F
FTT T T
FTF T F
FFT T T
FFF T F

z
TAUTOLOGY, CONTRADICTION & CONTINGENCY
2.[r^(p→q)]→q
p q rp →qr ^ (p →q) [r ^ (p →q)] →q
TTT T T T
TTF T F T
TFT F F T
TFF F F T
FTT T T T
FTF T F T
FFT T T F
FFF T F T
Therefore,[r^(p→q)]→qiscontingency.

z
TAUTOLOGY, CONTRADICTION & CONTINGENCY
3.p→(q→r)
p q r
TTT
TTF
TFT
TFF
FTT
FTF
FFT
FFF

z
TAUTOLOGY, CONTRADICTION & CONTINGENCY
3.p→(q→r)
p q rq → r
TTT T
TTF F
TFT T
TFF T
FTT T
FTF F
FFT T
FFF T

z
TAUTOLOGY, CONTRADICTION & CONTINGENCY
3.p→(q→r)
p q rq → r p → (q → r )
TTT T T
TTF F F
TFT T T
TFF T T
FTT T T
FTF F T
FFT T T
FFF T T
Therefore,[p→(q→r)iscontingency.

z
TAUTOLOGY, CONTRADICTION & CONTINGENCY
4.[p^(p→q)]→q
p q r
TTT
TTF
TFT
TFF
FTT
FTF
FFT
FFF

z
TAUTOLOGY, CONTRADICTION & CONTINGENCY
4.[p^(p→q)]→q
p q rp →q
TTT T
TTF T
TFT F
TFF F
FTT T
FTF T
FFT T
FFF T

z
TAUTOLOGY, CONTRADICTION & CONTINGENCY
4.[p^(p→q)]→q
p q rp →qp ^ (p →q)
TTT T T
TTF T T
TFT F F
TFF F F
FTT T F
FTF T F
FFT T F
FFF T f

z
TAUTOLOGY, CONTRADICTION & CONTINGENCY
4.[p^(p→q)]→q
p q rp →qp ^ (p →q)[p^ (p →q)] →q
TTT T T T
TTF T T T
TFT F F T
TFF F F T
FTT T F T
FTF T F T
FFT T F T
FFF T f T
Therefore,[p^(p→q)]→qistautology.

z
TAUTOLOGY, CONTRADICTION & CONTINGENCY
5.p→(p↔r)
p q r
TTT
TTF
TFT
TFF
FTT
FTF
FFT
FFF

z
TAUTOLOGY, CONTRADICTION & CONTINGENCY
5.p→(p↔r)
p q rp ↔ r
TTT T
TTF F
TFT T
TFF F
FTT F
FTF T
FFT F
FFF T

z
TAUTOLOGY, CONTRADICTION & CONTINGENCY
5.p→(p↔r)
p q rp ↔ r p → (p ↔ r )
TTT T T
TTF F F
TFT T T
TFF F F
FTT F T
FTF T T
FFT F T
FFF T T
Therefore,p→(p↔r)iscontingency.

z
•Levin, O. (2019). Discrete Mathematics: An Open Introduction 3
rd
Edition. Colorado: School of Mathematics Science
University of Colorado.
•Aslam, A. (2016). Proposition in Discrete Mathematics retrieved from https://www.slideshare.net/AdilAslam4/chapter-1-
propositions-in-discrete-mathematics
•Operator Precedence retrieved from http://intrologic.stanford.edu/glossary/operator_precedence.html
REFERENCES