Formal Logic - Lesson 4 - Tautology, Contradiction and Contingency
5,516 views
26 slides
Apr 13, 2020
Slide 1 of 26
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
About This Presentation
Lecture / Presentation in Discrete Structure I
Size: 1.32 MB
Language: en
Added: Apr 13, 2020
Slides: 26 pages
Slide Content
z
FORMAL LOGIC
Discrete Structures I
FOR-IAN V. SANDOVAL
z
Lesson 4
TAUTOLOGY, CONTRADICTION
AND CONTINGENCY
Source: Google Images
z
LEARNING OBJECTIVES
❑Distinguish classes of compound statement
z
TAUTOLOGY
❑acompoundstatementthatistrueforallpossible
combinationofthetruthvaluesofthepropositional
variablesalsocalledlogicallytrue.
❑i.e.(~p^q)→q
p q ~p ~p ^ q (~p ^ q ) →q
T T F F T
T F F F T
F T T T T
F F T F T
z
CONTRADICTION
❑acompoundstatementthatisfalseforallpossible
combinationofthetruthvaluesofthepropositional
variablesalsocalledlogicallyfalseorabsurdity.
❑i.e.(~pvq)⊕(p→q)
p q ~p~ p v q p →q (~ p v q ) ⊕(p →q )
TTF T T F
TFF F F F
FTT T T F
FFT T T F
z
CONTINGENCY
❑acompoundstatementthatcanbeeithertrueoffalse,
dependingonthetruthvaluesofthepropositionalvariables
areneitheratautologynoracontradiction..
❑i.e.(p→q)^(p→~q)
p q p →q ~q p →~q (p →q ) ^ (p →~q )
TT T F F F
TF F T T F
FT T F T T
FF T T T T
z
TAUTOLOGY, CONTRADICTION & CONTINGENCY
1.p⊕(~p↔q)
p q
T T
T F
F T
F F
z
TAUTOLOGY, CONTRADICTION & CONTINGENCY
1.p⊕(~p↔q)
p q ~p
T T F
T F F
F T T
F F T
z
TAUTOLOGY, CONTRADICTION & CONTINGENCY
1.p⊕(~p↔q)
p q ~p (~p ↔ q)
T T F F
T F F T
F T T T
F F T F
z
TAUTOLOGY, CONTRADICTION & CONTINGENCY
1.p⊕(~p↔q)
p q ~p (~p ↔ q)p ⊕(~p ↔q)
T T F F T
T F F T F
F T T T T
F F T F F
Therefore,p⊕(~p↔q)iscontingency.
z
TAUTOLOGY, CONTRADICTION & CONTINGENCY
2.[r^(p→q)]→q
p q r
TTT
TTF
TFT
TFF
FTT
FTF
FFT
FFF
z
TAUTOLOGY, CONTRADICTION & CONTINGENCY
2.[r^(p→q)]→q
p q rp →q
TTT T
TTF T
TFT F
TFF F
FTT T
FTF T
FFT T
FFF T
z
TAUTOLOGY, CONTRADICTION & CONTINGENCY
2.[r^(p→q)]→q
p q rp →qr ^ (p →q)
TTT T T
TTF T F
TFT F F
TFF F F
FTT T T
FTF T F
FFT T T
FFF T F
z
TAUTOLOGY, CONTRADICTION & CONTINGENCY
2.[r^(p→q)]→q
p q rp →qr ^ (p →q) [r ^ (p →q)] →q
TTT T T T
TTF T F T
TFT F F T
TFF F F T
FTT T T T
FTF T F T
FFT T T F
FFF T F T
Therefore,[r^(p→q)]→qiscontingency.
z
TAUTOLOGY, CONTRADICTION & CONTINGENCY
3.p→(q→r)
p q r
TTT
TTF
TFT
TFF
FTT
FTF
FFT
FFF
z
TAUTOLOGY, CONTRADICTION & CONTINGENCY
3.p→(q→r)
p q rq → r
TTT T
TTF F
TFT T
TFF T
FTT T
FTF F
FFT T
FFF T
z
TAUTOLOGY, CONTRADICTION & CONTINGENCY
3.p→(q→r)
p q rq → r p → (q → r )
TTT T T
TTF F F
TFT T T
TFF T T
FTT T T
FTF F T
FFT T T
FFF T T
Therefore,[p→(q→r)iscontingency.
z
TAUTOLOGY, CONTRADICTION & CONTINGENCY
4.[p^(p→q)]→q
p q r
TTT
TTF
TFT
TFF
FTT
FTF
FFT
FFF
z
TAUTOLOGY, CONTRADICTION & CONTINGENCY
4.[p^(p→q)]→q
p q rp →q
TTT T
TTF T
TFT F
TFF F
FTT T
FTF T
FFT T
FFF T
z
TAUTOLOGY, CONTRADICTION & CONTINGENCY
4.[p^(p→q)]→q
p q rp →qp ^ (p →q)
TTT T T
TTF T T
TFT F F
TFF F F
FTT T F
FTF T F
FFT T F
FFF T f
z
TAUTOLOGY, CONTRADICTION & CONTINGENCY
4.[p^(p→q)]→q
p q rp →qp ^ (p →q)[p^ (p →q)] →q
TTT T T T
TTF T T T
TFT F F T
TFF F F T
FTT T F T
FTF T F T
FFT T F T
FFF T f T
Therefore,[p^(p→q)]→qistautology.
z
TAUTOLOGY, CONTRADICTION & CONTINGENCY
5.p→(p↔r)
p q r
TTT
TTF
TFT
TFF
FTT
FTF
FFT
FFF
z
TAUTOLOGY, CONTRADICTION & CONTINGENCY
5.p→(p↔r)
p q rp ↔ r
TTT T
TTF F
TFT T
TFF F
FTT F
FTF T
FFT F
FFF T
z
TAUTOLOGY, CONTRADICTION & CONTINGENCY
5.p→(p↔r)
p q rp ↔ r p → (p ↔ r )
TTT T T
TTF F F
TFT T T
TFF F F
FTT F T
FTF T T
FFT F T
FFF T T
Therefore,p→(p↔r)iscontingency.
z
•Levin, O. (2019). Discrete Mathematics: An Open Introduction 3
rd
Edition. Colorado: School of Mathematics Science
University of Colorado.
•Aslam, A. (2016). Proposition in Discrete Mathematics retrieved from https://www.slideshare.net/AdilAslam4/chapter-1-
propositions-in-discrete-mathematics
•Operator Precedence retrieved from http://intrologic.stanford.edu/glossary/operator_precedence.html
REFERENCES