Formulas de derivación e integración

19,063 views 2 slides Dec 07, 2013
Slide 1
Slide 1 of 2
Slide 1
1
Slide 2
2

About This Presentation

No description available for this slideshow.


Slide Content

UNIVERSIDAD NACIONAL AUTONOMA DE HONDURAS
FORMULAS DE INTEGRACION Y DIFERENCIACION

Fórmulas de Integración


Fórmulas de Derivación
1.'
d
cu cu
dx
 10.  
'
log
ln
b
du
u
dx u b
 19. 
2
'
arcsin
1
du
u
dx u



2.''
d
u v u v
dx
   11. '
uud
e e u
dx

 20. 
2
'
arccos
1
du
u
dx u




3.''
d
uv vu uv
dx
 12. 'ln
uud
a a u a
dx

 21. 
2
'
arctan
1
du
u
dx u



4.2
''d u vu uv
dx v v



 13.  sin cos '
d
u u u
dx

 22. 
2
'
arccot
1
du
u
dx u




5.0
d
c
dx

14.  cos sin '
d
u u u
dx

 23. 
2
'
arcsec
1
du
u
dx uu



6. 1
'
nnd
u nu u
dx



15.  
2
tan sec '
d
u u u
dx

 24. 
2
'
arccsc
1
du
u
dx uu




7. 1
d
x
dx
 16.  
2
cot csc '
d
u u u
dx


8. ', 0
du
u u u
dx u
   
 17.  sec sec tan '
d
u u u u
dx


9. 
'
ln
du
u
dx u
 18.  csc csc cot '
d
u u u u
dx



1.  kf u du k f u du 12.   sec ln sec tanu du u u C  
2.   f u g u du f u du g u du  
   13.  csc ln csc cotu du u u C  
3. du u C 14.  
2
sec tanu du u C
4. 1
, 1
1
n
n u
u du C n
n

   

 15.  
2
csc cotu du u C  
5. ln
du
uC
u
 16.  sec tan secu u du u C
6. uu
e du e C 17.  csc cot cscu u du u C  
7.  sin cosu du u C   18. 22
arcsin
du u
C
aau





8.  cos sinu du u C 19. 22
1
sec
du u
arc C
aau u a





9.   tan ln cos ln secu du u C u C     20. 22
1
arctan
du u
C
a u a a



 

10.  cot ln sinu du u C 21. 22
1
ln
2
du u a
C
a u a u a




11. ln
u
u a
a du C
a
 2222
1
ln
2
du u a
C
u a a u a




UNIVERSIDAD NACIONAL AUTONOMA DE HONDURAS
FORMULAS DE INTEGRACION Y DIFERENCIACION

Factor Integrante


,
,
yx
xy
MN
dx
N
NM
dy
M
u x y u x e
u x y u y e






Tags