Foundation engineering all units including

Bhupendrakatwal 76 views 81 slides Jul 12, 2024
Slide 1
Slide 1 of 81
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30
Slide 31
31
Slide 32
32
Slide 33
33
Slide 34
34
Slide 35
35
Slide 36
36
Slide 37
37
Slide 38
38
Slide 39
39
Slide 40
40
Slide 41
41
Slide 42
42
Slide 43
43
Slide 44
44
Slide 45
45
Slide 46
46
Slide 47
47
Slide 48
48
Slide 49
49
Slide 50
50
Slide 51
51
Slide 52
52
Slide 53
53
Slide 54
54
Slide 55
55
Slide 56
56
Slide 57
57
Slide 58
58
Slide 59
59
Slide 60
60
Slide 61
61
Slide 62
62
Slide 63
63
Slide 64
64
Slide 65
65
Slide 66
66
Slide 67
67
Slide 68
68
Slide 69
69
Slide 70
70
Slide 71
71
Slide 72
72
Slide 73
73
Slide 74
74
Slide 75
75
Slide 76
76
Slide 77
77
Slide 78
78
Slide 79
79
Slide 80
80
Slide 81
81

About This Presentation

Short notes for foundation engineering


Slide Content

UNIT 1:

GeotechnicalEngineering–II
BTechCivilEngineering–6
th
Semester
Course Materials
Chapter I: SOIL EXPLORATION

Soil Exploration WHAT??WHY??
Forconstructionofanystructure,aknowledgeabouttheground
conditionsisimportant.Thesoilstructure,capacityandbehaviour
undervariousloadingconditionswillhelpdesignthesubstructuresand
retainingstructures,andtosuggestremedialactionstoimproveground
conditionswhenrequired.
Explorationinsoil-involvesasitevisit,quickvisualinspectionand
detailedteststodeterminethebehaviour
"Thefieldandlaboratoryinvestigationsrequiredtoobtainnecessary
dataregardingthesoil,forproperdesignandsuccessfulconstruction
ofanystructureatthesitearecollectivelycalledsoilexploration.”

ObjectivesofSoilInvestigation
1.Toassessthegeneralsuitabilityofsite
2.Todeterminethebearingcapacityofthesoil
3.ToSelectthetypeanddepthoffoundationforagivenstructureEstimatemax.probable
settlement(totalanddifferential)
4.Investigatethenatureanddepthofeachstratumandassessrequiredproperties
5.Toselectthesuitableconstructiontechnologybasedonavailabilityandeconomy
6.Toknowthegroundwaterconditions
7.Predictpossibledifficultiesandproblemsinsiteandsuggestremedialactions
8.Ensuresafetyofexistingstructures
9.Investigatetheoccurrenceofanynaturalormanmadechangesinconditionsandthe
resultfromthosechanges
This information obtained by -
Drilling holes, taking samples,
finding Index and Engineering properties
Conducting some field tests

HOWTODOIT??
For any project, soil investigation Costsof 0.2%-Even1% insomecases-Soproper
planningmust!!
Dependson
Typeandimportanceofstructure
Natureofsubsoil(stratavariability)
Budget/economy
Involves
Locationanddepthofboreholes
Teststobedone,andtestmethods
Samplingmethods
3importantphases:Planningexecutionreportwriting
DetailedinformationLessuncertaintylaterless factorofsafety(orfactor of
Ignorance!!)lesscostof construction

Stages in Subsoil Exploration
Reconnaissance
Preliminary Investigation Detailed investigation
Involvesasitevisitandvisual
inspectionsatthesite
Rough Idea about work that how to
start
Toassesstheneedfordetailedinvestigation
Determination ofdepth,thickness, extentand
compositionof eachlayer
DepthofbedrockandGroundwatertablealsostudied
Labandfieldteststoassessbasicproperties
Chemicaland bacteriologicaltestsifneeded
Methods:
Boreholes,testpits, Conepenetrometer, Sounding
rods, Geophysicalmethods
Mainlyforbigprojects-Dams,bridges,multistoried
buildings
Alsofornewlybuiltupsoil
Involvesextensiveboringprogrammesampling
laband fieldtesting
For smallprojectsonsitewith uniformstrata or
clearhistory,info. from reconnaissanceand prelim.
investigationsufficient
Uniformstrataboreholesatregularspacing

Some Visual indicationsabout site
Random depressionsandmarkedirregularitiesSink holes
Wrinklingofsurfaceonhillsidesoil creep
Shaftsorheapsofmineralwasteabandoned mines
Lowlyingflatareasriverorlakebed
Springs,wellsHighwatertable
MarshygroundHighwatertablewithpoordrainage

BOREHOLE (BH)
Depth,lateralextentand numberof boreholesdata are importantfor any soil
investigation before construction
DepthofExploration:Dependsontypeofstructure,intensityofload,soil
profile,andthephysicalpropertiesofsoil
(Basedonfewtrialpitsandtestborings,oranexperiencedperson’sjudgement)
SignificantDepth:
"Depthuptowhichthe superimposedloadscanproduceconsiderable settlement
andshearstresses"
Generally,significantdepthisthat atwhich verticalstressis20%( or 1/5
th
)of
the load intensity(considering2:1 loaddistribution,stressat D=1.5Bisnearly
1/5
th
)
Depthofexplorationmust be greaterthanorequaltosignificantdepth

Depth of exploration for some structures
(Code: IS1892-1979)

Forhospitalsandofficebuildings,thefollowingrulecouldbe useto determineboringdepth
Deepexcavations,thedepthofboring shouldbeat,least1.5timesthe depthof excavation.
The minimum depth of core boring into the bedrock is about 3m. If the bedrock is irregular or
weathered, the core borings mayhave to be extendedto greater depths.
If there are weak zones at depth ( zone of volume change, seasonal variations, swellingand
shrinkage),boringshouldbe continuedbelow thisweakzones.
Alwaysensure:Explorationdepthsuchthat loadcanbe carriedbythat stratum
withoutundesirable settlementand shearfailure

Lateralextentofexploration
Number and spacing of boreholes must be such as to reveal any major changes in thethickness,depth
andpropertiesofstrataover the baseareaofthestructure anditsimmediatesurroundings.
Moreuniformstrata-lessno: ofBH andmorespacingcanbe adopted
Erraticvariation-moreno: ofboreholesatreducedspacing
Whereverpossible,BHmustbesunkclose totheproposedfoundation, especiallyinsoilsof
erraticvariation
Whenlayoutnotplannedbefore-Best patternisevenlyspaced grid of BH
ConepenetrationtestscanbeperformedTevery50mintervals
Gravellyandboulderousstrata-CPTnot feasible,hencegeophysicalmethods adopted

Lateral extent of exploration (IS: 1892)

Direct/Open excavation (<6m)
•Drifts
•Shafts
•Pits
•Trenches
Semi direct/Boring
•Auger boring
•Wash boring
•Percussion boring
•Rotary boring
•Core Drilling
Indirect methods
•Geophysical methods
•Sounding rods
DifferentMethodsofExplorationinsoils

Open excavation (for depth <6m)
Trialpits-1.2mX1.2m(IS 4453-1967)
Depth>3mlateralsupport
Properventilationanddewateringifnecessary
Trenches-longshallowcontinuouspit,exposing aline
Drifts(adits)-horizontaltunnelsalonghillside,especiallyforrocks
Min1.5m(b)X2m(h)
Lateralsupportifunstable
Generallyexpensive
Helpstoestablishminimumexcavationlimitstoreach soundrocks,
&tolocatefailureandshear zones
Shafts:Largeverticalholes(min2.4mwidthordiameter)
ForD>4m
Propersupportandventilationrequired

Boringrefersto advancingahole intheground,usedespeciallywhenD>6m
It is asemi directmethodofexploration
Necessity:
Toobtainrepresentativesoilandrock samplesfor laboratorytests.
Toidentifythegroundwaterconditions.
Performanceofin-situteststoassessappropriatesoilcharacteristics.
Extensometersandpressuremeters canbeinstalled
Results Borelogandsubsurface profilescan be obtained
Drillingborehole takingsamplestestingBorelog
Types:(1)Augerboring(2)Washboring(3)Percussiondrilling(4)Rotarydrilling(5)Coredrilling
Boring methods

AugerBoring
Simplest and most common method of boring for small projects in
soft cohesivesoils.–Fast,economical,light,inexpensiveand
flexible
Augeradrillforadvancingholes
Has ashankwithcrosswisehandletoapplytorque
Thelengthof theaugerbladevariesfrom0.3-0.5m.
Diameterofcentralrodalmost18mm
Augerheldverticallyanddrivenbyapplyingtorque,eithermanually
ormechanically
Drivingforce:Torqueonhandle+downwardpressingforce
The augerisrotateduntilitisfullofsoil,thenitis withdrawnto
remove thesoilandthesoiltypepresentatvariousdepthsisnoted.
Handaugersandmechanicallyoperatedauger
Postholeaugers:fortakingsamples whenholeisalreadydug/driven

Hand-operatedcan be made upto about 6mdepth
Usually used for shallow depth applicationsrailroad,highwaysetc
Highly disturbed samples (but better thanotherboringmethods)usedfor
classification purpose and basic tests only
PoweroperatedThe power required to rotatethe auger depends
onthe typeand size ofauger and the typeof soil.
can be made uptoabout 12m depth
Downwardspressureappliedhydraulically,mechanicallyorbydead
weight

Mechanical/Power operating augers
Outcomes of Auger boring:
Disturbed soil we get
Below Water table not possible
Changes in soil strata not known
Hand operatingaugers

WashBoring
Fastand simpledo works at > 12 m depths
Casingpipe–5-10cmdiameterdriventothegroundfirst,
uptocertaindepth (~1.5m)
Washpipe-lower diaupperendconnectedto watersupply
system,andlowerend tochiselshapedchoppingbit
Water with high pressure pumped through hallow boring rods
released from narrowholes in a chisel attachedto thelower
endoftherods.
Drivingforce:jettingactionofwater+choppingaction ofchisel
Slurrycomesup throughannularspacebetweencasingpipeand
wash pipetakenintubsettlessamplescanbetakenif
required
Furtheradvancementof holecanbedonebyraisingandlowering
ofchoppingbit
Casingscanbe extendedordrillingfluidscanbe pumpedinstead

Outcomes:
Highlydisturbedsamples
Finerparticles(clay,loametc.)wontsettle,and
heavierparticlesnot brought up
Exactstrataidentificationnotpossibleduetomixingof
soilparticles
Slowincoarsegrainedand stiffsoils
Not effectiveinhardsoils,rocks,boulders
Canbeusedinmosttypeofsoilbuttheprogressisslowin
coarsegravelstrata
Someindicationsaboutstratafromslurrycolouranddrill
penetrationresistance
Itisonlyusedforadvancingtheboreholetoenabletube
samplestobetakenorfieldtesttobecarriedatthehole
bottom.
WashBoring

WashBoring

Percussiondrilling
Consistsofbreakingupoftheformationbyrepeatedblows
fromabitorachisel.
Watershouldbeaddedtotheholeatthetimeofboring,and
thedebrisremovedatintervals.
Wheretheboringisinsoilorintosoftrocksandprovided
thatasamplercanbedrivenintothem,coresmaybe
obtainedatintervalsusingsuitabletools
Butinsoils,thematerialtendstobecomedisturbedbythe
actionofthismethodofboringandforthisreason,thesample
maynotbemuchreliable
Asthesemachinesaredevisedforrapiddrillingby
pulverizingthematerial,theyarenotsuitableforcareful
investigation.
Theonlymethodsuitablefordrillingboreholesin
boulderousandgravellystrata.

Change in soil characteridentifiedbycomposition
of outgoingslurry
Disadvantages:
Bottommaterialhighlydisturbeddue toheavyblows
Expensive-requireslarge equipments
Minorchangescannotbedetected fromtheslurry
Uneconomicalforholesof diameter<10cm
Alsousedfordrillingtubewells
Percussiondrilling

Rotarydrilling
Similar towashboring, buthole advancedbyrotatingahollow
drillrodwith cuttingbitatthelowerend and drill headat upper
portion
Primarilyintendedfor investigationin rock,but also usedin soils.
Waterordrillingfluid ispumpeddownthehollowrodsand passes
under pressure throughnarrowholesinthe bit or barrel
Drillingrodrotatescutting bitshearsoffchipsof materialmaterials
removedby circulatingdrillingfluids
Functionsofdrillingfluid:
coolsandlubricatesthedrillingtool
carriestheloosedebris tothesurface betweentherods andtheside
ofthehole.
Providessomesupporttothesides of theholeifno casingisused .
Usefulforhighlyresistantstrata and forclay,sand,rocks
Notforgravellysoilsincetheykeeprotatingbeneathdrill rod

Twoformsofrotarydrillingopen-holedrillingand coredrilling.
Open-holedrillinggenerallyusedinsoilsandweakrockjustforadvancingtheholeThe
drillingrodscanthenberemovedtoallowtubesamplestobetakenorin-situteststobecarried
out.
Core drillingusedin rocksandhardclaysthediamondor tungstencarbidebit cutsan
annularhole in thematerialand an intactcoreentersthe barrel,toberemovedasasample.
Typicalcorediametersare41,54and76mm,butcanrangeupto165mm.
Suitablefor holesof15-20cmdia;uneconomicalfordiameter<10cm
Advantages:progress muchfaster, anddisturbanceofthesoilbelowtheboreholeisslight.
LimitationsThe method isnot suitableif the soil containsahighpercentageof
gravel/cobbles,astheytendtorotatebeneaththebitandarenotbrokenup.Thenaturalwater
contentof the materialisliabletobe increaseddueto contact withthe drillingfluid
Rotary drilling

Rotarydrilling

Coredrilling
Atypeofrotarydrillingusedforrocks
Similartorotarydrilling,butprovidedwithasharpercuttingedge(madeofdiamondortungsten)
DrillingrodwithcorebarrelfittedwithdrillingbitRotateddrillbitadvancesdowncutsan
annularholearoundanintactcore.
Corethenremovedandretainedbycorelifter
Waterpumpedcontinuouslytocoolthedrillingbit,andbringupthedisintegratedmaterials
Important:ensurethatboulders,orlayersofcementedsoilsarenotmistakenforbedrock.This
necessitatescoredrillingtoadepthofatleast3minbedrockinareaswherebouldersareknowntooccur.
Forshearstrengthdetermination,acorewithdiametertoheightratioof1:1isrequired.
Rockpiecesmaybeusedfordeterminationofspecificgravityandclassification.

Coredrilling

Undisturbed samples
The natural state of soil structure
remain as it is
To find: Shear parameters,
Compressibility, Permeability, Field
Moisture-Density, Void ratio
Non representative samples
•Mineral composition is
changed
Representative samples
•Structure get disturbed but mineral
composition is same
(Used to find index properties)
Samples
Disturbed samples
The natural state of soil structure get
disturbed while sampling
To find: Atterberglimits, GSD,
Compaction, SG
SAMPLINGTOOLSANDSAMPLERS

Cuttingedge Insidewallfriction
Methodofapplyingforce Non-returnvalve
Designfeaturesaffectingdegreeofdisturbance

Designfeaturesaffectingdegreeofdisturbance
InsideClearance:C
i=(D
3-D
1)/D
1X100
•Internal dia of cutting edge must beslightly less
than internaldiaofsamplingtube
•Itallowselasticexpansionofthesampleand
reduces frictionaldrag
Forundisturbedsample,C
i=1to3%
•Outsidediaofcuttingedgemust bemore than
outerdiaoftube
•To facilitate the withdrawal of sampler from soil,this
must beleast
Forundisturbedsample,Itshouldlie between 0 to 2%
( But C
o must not be much morethanC
i)
Outsideclearance:C
o=(D
2–D
4)/D
4X 100
1.CUTTINGEDGE

2 2 2
A
r=RatioofMaximumcross-sectionalareaofthecuttingedgetototalareaofthe soil sample
Shouldbeaslow aspossible,consistentwithstrengthrequirementof sampletube
Generally,forUndisturbedsamples:Area ratiolessthan 10%
ArearatioA
r=(D
2-D
1)/D
1 X 100
2. Inside wall Friction: Theinsidewallshouldbesmooth.
Canbedoneby:
Applyingoilinsidethetube
Providingsmooth finishtosampletube
Ensuringsuitableinsideclearance

3.DesignofNonreturnValve:
Thesamplermusthavealarge orificetoallowquickescapingof air,waterorslurry.
4.Methodofapplyingforce:
Therateofadvancementandmethod ofapplicationofforce controlsthesample
disturbance.
Thesamplermust bepushednotdriven
5.Recoveryratio:
R=L/H
L = length of sample within the tube; H= depth of the penetration of sampling tube
It shouldbe 96-98%forgoodundisturbedsample

Opentubesampler/Shelbytubes
Thinwalled, Undisturbed samples
Madeof seamlesssteelwithchamferedlowerendforeasypenetration
Outsidedia:45mm,65mm,80mm,100mmetc.
Thickness:1.25-3.15mm
Commonlyused:outsidedia 50.8mm,inside dia 47.63mm=>Area
ratio~10% (always< 15%)Undisturbed
Casingdrivenuptosamplinglevelholeiscleanedsamplingdone
Lengthoftube:5-10timesdia forsandysoils,and10-15timesdia for
clayeysoils
Samplerpushed,not drivenleastdisturbance
Suitableinverysofttomediumsoftclays andsilts

Splitspoonsampler
3parts
Drivingshoeatbottom-75mm long
Steeltube,splitlongitudinallyinto2halves-450mmlong
Couplingatthetop-150mmlong
Procedure:
Sampler lowered to the bottom of the borehole by attaching it to the drill rodThen driven by forcing it
into the soil by blows of a standard hammerSampler assemblythentakenoutcoupling andriving
shoeremovedsteeltube splitinto halvessamplestaken
StandardpenetrationTest:UsessplitspoonsamplerHammer63.5Kg;heightoffall 762mm
Samplesgenerallytakenatintervalsof 1.53m
Commonlyuseddia:Outsidedia 50.8mmandinside dia 34.9mm=>Area ratio> 100%highly
disturbedsamples
Whenusedin sand,―springcore catcher‖placedinside thesplittube,toretainthesample

Pistonsampler
Consistsoftwoseparateparts,(a) the samplecylinderand
(b)thepistonsystem
Pistonfitstightlyinthesamplercylinderandisactuatedseparately.
During the driving and till the start of the sampling operation,thebottomof
thepiston flushwiththecutting edgeofthesampler.
Atthedesiredsamplingelevation,thepistonfixedintothegroundandthe
samplercylinderforcedindependentlyintotheground,thuspunchingasample
outofthesoil
Thepistonpreventswateranddirtfromenteringthetubeduringthelowering
operation.Italsokeepstherecoveryratioconstantduringthepunch.
As the sampler tube slides past the tight fitting piston during the sampling
operation, a negative pressure is developedabovethesample,whichholds
backthe sampleduring withdrawal

Handcarvedsamples
Acylindricalcontaineropenat both the ends is
used for sampling.
Thesoilistrimmedtoshapeat thebottomof
thetestpit
One end of container is closed andinverted
overthesoilchunk and the soil sample is
removed usingspatula
Thismethodissuitablefor cohesivesoil.

GEOPHYSICALMETHODS
Indirectmethod: Fromsurfacemeasuringcertainphysicalpropertiesinterpretthe
subsurfacesoilproperties
Basedonthe changesin gravitational,magnetic,electrical,radioactiveor elasticpropertiesof
thedifferentelementsof thesubsoil
Gravitational, magnetic and radioactive propertiesminor change near surface
Resistivitymethodbasedon theelectricalpropertiesandtheseismic
refractionmethodbasedontheelasticpropertieswidelyused
ADVANTAGES: simple, fast, economical, portable instruments, large area easilyinvestigated
APPLICATIONS:subsurfacesoil,mineralores,geologicstructures,groundwaterstudies

Electrical methods
Principle
Electricmethodsarebasedonthefactthatthesubsurface
formation, structures,oredeposits,etc.possess
different electricalproperties.
Numerousandversatileapplicationsgroundwaterstudies,
subsurface structuresandmanyothers
Propertiesconsidered:electricalresistivity,dielectricconstant
Types:electricalresistivity method,electromagnetic
methods,selfpotential methods andinduce polarization
method
Subsurfacesoil explorationelectricalresistivitymethod
used
Electrical Resistivity Measurements

ElectricalResistivitymethod-ProsandCons
Advantages
Itisaveryrapidand economicalmethod.
Itisgoodupto30mdepth.
The instrumentationof thismethodis verysimple.
Itisanon-destructivemethod.
Disadvantagesofthismethodare:
Itcan onlydetectabsolutelydifferentstratalikerockandwater.
Itprovidesnoinformationaboutthesample.
Culturalproblemscauseinterference,e.g.,powerlines, pipelines,buriedcasings, fences.

SeismicMethods
ControllingProperties:Elasticproperty
Principle:
Subsurface soil androck formations bear different elastic properties
seismicwaveshavedifferentvelocitiesindifferenttypesofsoils(orrock)
wavesrefractatboundaries
Artificialimpulseproducedeitherby detonationofexplosiveor
mechanical blow with a heavy hammer at ground surface or at the shallow
depth within a hole.
Assumesthatsoilgetsdenserwithdepthandhencevelocityofseismic
waves increasewithdepth.
Geophonesfixedatsuitableintervalsontheground
Geophone

Seismic wavescompressivewaves,shearwavesandsurfacewaves
compressivewavesrecorded
Thesewavesareclassifiedasdirect,reflectedandrefractedwaves.
The directwavetravelinapproximatelystraightlinefromthesourceof impulse.
The reflectedandrefractedwaveundergoesachangeindirectionwhen they encounter a boundary
separating media of different seismic velocities
Thismethodismore suitedto theshallowexplorationsforcivil engineeringpurpose.
Assumption:
•Allsoillayersarehorizontal.
•Thelayer issufficientlythicktoproducea response.
•Eachlayerishomogeneousandisotropic.
•Velocityshouldincreasewithdepth,followingtheSnell's law

Seismic refraction test

Spacingofgeophones:dependuponamountofdetailrequiredandthedepthtobeinvestigated;
Generallyspacedsuchthattotaldistancefromfirsttolastgeophoneis3-4timesthedepthof
investigation
Uptocertaindistance (criticaldistance,sayL1),directwavesreachfirst from layer1.
AfterL1,therefractedwave willreachfirstsinceitpassesthroughadenser layer2.
Soat L1,both reachessimultaneously.-onetravellingL1distance atV1and other,gettingrefracted
fromlayer2,ietravelling2H1atV1andL1atV2. i.e,
??????1
=
2??????1
+
??????2
??????1 ??????1 ??????2 ??????2
soH1=(
V2−V1
*
??????1
)
2
Applications:
Depthandcharacterizationofthebedrocksurfaces
Buriedchannellocation
Depthofthewatertable
Depthandcontinuityofthestratigraphyinterfaces
Mappingoffaultsand otherstructuralfeatures.

Advantages
Complete pictureof stratificationof layerupto 10mdepth.
Simple equipmentsandeasyexecution
Littleprocessingrequired
Providesseismicvelocityinformationforestimatingmaterialproperties.
Providesgreaterverticalresolutionthanelectrical,magnetic,or gravity
methods.
Data acquistionrequiresverylimited intrusiveactivityisnon-destructive.
Cannotbe usedwhenhardlayer overliessoftlayer
Cannotbe usedinareaslikeconcreteorbitumen
Presenceofburiedconduitsandservices
Cannotbeusedinfrozenlayers
Highcost, and skilledlabour
Disadvantages

Roleofgeophysicalmethodsinsolvinggeotechnical problems
Gravitationaland magneticmethods inmining and petroleumengineering.
Geotechnicallimiteduseforsurvey ofunconsolidatedsedimentsoverthedense
bedrock.
Magneticmethodisappliedtolocatedikes, faultsand buriedpipesand other concealed magneticmetal
works.
Seismicandresistivitymethods:
Fordamandbridgesites,tolocatedepthofthesolidrock
Fordesignoftheunderwaterfoundation
Forbuildingsitestolocatehardrockstrata/softstrataseismicmethodis used.
Slopedesignandthelandslideinvestigation
Tolocatetheshallowdeposits
Groundwaterinvestigation
Inthe insituevaluationofconcrete,geophysicalmethodsareusedto determineuniformityofconcrete.

Standard Penetration Test (SPT)
Some Fields tests

Link: https://www.youtube.com/watch?v=DjWDOqQjsyQ

Static cone penetration test
Cone resistance, static load @ 10mm/sec,
to a depth of 35mm each time

Dynamic cone penetration test
https://www.youtube.com/watch?v=_pjOs7NqntQ
Cone resistance is measured by measuring no of blows
for driving cone for specific distance

Plate load test

PLT (Cont..)
https://www.youtube.com/watch?v=QuE4tEK-5iY

Pressure meter test

Vane shear test (Field)

12

70

71

1.Undisturbedsamples inseamless tube:
Endscutandremoved (atleast2.5cm)waxfillspacewithsaw dustlid
2.Undisturbedsamplesnotintube:
Coveredwhollywith waxmetalcontainertight lidadhesive tape
3.Disturbed:
Immediatelyplacedin glassjarairtightcontainer
4.Rocks:
Label-referenceno: directlyonsurface ortapewoundedwrappedin paperbox
Rockcorepreserve whole corecoreboxwithseparatecompartments
Labelingimportant
Transportation:Linerorcontainersplacedinwoodenboxwithseparate partitionspacked with fillers
Handling,preservationand transportationofsamples

Extrusion:
Take outchipoffwax
Pistonextrusion(ifproperlyoiled)disturbssoftclay
Supportthesample
Extrudein onedirectionfromcuttingedgetotop
Storeincoolhumidplace
Rock:keptintoboxensure noendtoend turning

Labeling:Labelplacedinsidelidontop

SUBSOILINVESTIGATIONREPORT
Laststepinasoilinvestigation
Boreholedata,site observationsandlabresults
Eachborehole-identifiedbycode
Mainly 4 parts: Project details; Results; Analysis and possible solution; Recommendations(Allowable
soilpressureand expectedsettlements)
Borelogalldetailsof the boreholedepth,stratavariationobtained,
propertiesofeachstrata,watertableetc
Subsurface profiledata obtained from a series of boreholes vertical sectionthrough groundalong
lineofexplorationIndicateboundariesof strata,theclassificationof soil type,and mainproperties

Contentsofsubsoilinvestigationreport
1.Scopeof theinvestigation
2.Proposedstructure
3.Locationdescriptionsofthe sitestructures nearby,drainageconditions,
vegetationandanyotherfeaturesuniquetothesite
4.Geologicalsettingof thesite
5.Detailsofthefieldexploration—numberofborings,depthsofborings,typesofboringsinvolved,andsoon
6.Ageneraldescription ofthesubsoilconditions-fromlabandfieldtests
7.Thewater-tableconditions
8.Recommendations regarding the foundation, the allowable hearing pressure, and any specialconstruction
procedure thatmayhe needed;
9.Conclusionsandlimitationsoftheinvestigations

SubsoilExplorationReport-Graphical presentations
The followinggraphicalpresentationsshouldhe attachedtothereport:
1.Asitelocationmap
2.Aplanviewofthelocationoftheboringswithrespecttothe proposedstructuresandthosenearby
3.Boringlogs
4.Laboratorytestresults
5.Otherspecialgraphicalpresentations

Thank you…..
Tags