Fractales bartolo luque - curso de introduccion sistemas complejos

F_Sicomoro 576 views 93 slides May 11, 2016
Slide 1
Slide 1 of 93
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30
Slide 31
31
Slide 32
32
Slide 33
33
Slide 34
34
Slide 35
35
Slide 36
36
Slide 37
37
Slide 38
38
Slide 39
39
Slide 40
40
Slide 41
41
Slide 42
42
Slide 43
43
Slide 44
44
Slide 45
45
Slide 46
46
Slide 47
47
Slide 48
48
Slide 49
49
Slide 50
50
Slide 51
51
Slide 52
52
Slide 53
53
Slide 54
54
Slide 55
55
Slide 56
56
Slide 57
57
Slide 58
58
Slide 59
59
Slide 60
60
Slide 61
61
Slide 62
62
Slide 63
63
Slide 64
64
Slide 65
65
Slide 66
66
Slide 67
67
Slide 68
68
Slide 69
69
Slide 70
70
Slide 71
71
Slide 72
72
Slide 73
73
Slide 74
74
Slide 75
75
Slide 76
76
Slide 77
77
Slide 78
78
Slide 79
79
Slide 80
80
Slide 81
81
Slide 82
82
Slide 83
83
Slide 84
84
Slide 85
85
Slide 86
86
Slide 87
87
Slide 88
88
Slide 89
89
Slide 90
90
Slide 91
91
Slide 92
92
Slide 93
93

About This Presentation

¿Qué tienen en común los brócolis, las nubes y los cráteres meteoríticos? Todos exhiben fractalidad. Una nueva ciencia como la de los Sistemas Complejos, requería una nueva manera de caracterizar las formas: la geometría fractal. En esta charla aprenderemos qué es un fractal, dónde aparece...


Slide Content

Fractales)
Bartolo)Luque
Gabor
Csordasy*
GaborPapp

3
El)efecto)Droste
Talvezlaformamáselementalypri2
mitivaderecursividadseaelefecto
Droste:unaimagenquecontieneuna
réplicaenminiaturadesímisma.
Elnombreprovienedeunapopular
marcadechocolatesdelosPaíses
Bajosque,aprincipiosdelsigloxx,
empleóesteefectoenunadesus
imágenespublicitarias.Enella
aparecíaunaenfermeraqueportaba,
justamente,unacajadecacao
Drostedecoradaconunaréplicaen
miniaturadelaimagenoriginal.Así
pues,enlacajaaparecíaotravezla
enfermera,lacualllevabaotracaja,y
asísucesivamente.

Diseño)publicitario

Visage of War,Salvador Dali (1940)

Geometrical)Self9Similarity

Geometrical)Self9Similarity
The)magnified)piece)of)an)object)is)
an)exact)copy)of)the)whole)object.
SierpinskiTriangle.exe

zoomIin
andIrescaleI
Geometrical)Self9Similarity

zoomIin
andIrescaleI
Geometrical)Self9Similarity

Cosas)raras:)el)perímetro
Koch)snowflake
n
nN 43)( ⋅=
n
nL )3/1()(=
n
nLnNnP )3/4(3)()()( ⋅==
3)0(
1)0(
==
==
nN
nL
∞→n∞
KochCurve.exe

14
"I coined fractal from the Latin adjective
fractus. The corresponding Latin verb
frangere means "to break": to create
irregular fragments. It is therefore
sensible -and how appropriate for our
needs! -that, in addition to "fragmented"
(as in fraction or refraction), fractus
should also mean "irregular", both
meanings being preserved in fragment."
(The Fractal Geometry of Nature)
La palabralatinafractussignificaquebrado. En palabras
de Benoit Mandelbrot:
Benoit Mandelbrot (1924-2010)

TheICantorISetIisItheIdustIofI
pointsIobtainedIasItheIlimitI
ofIthisIsuccessionIofI
segments
ThisIisIalreadyItheIlimitI
ofI
successionIofIiterations

Más cosas raras: Curva de Peano
¿TieneIentoncesIlaIcurvaIdimensiónI1IoIdimensiónI2?
¿TieneIsentidoIestaIpregunta?

Objects(in(
mirror(are(
closer(than(
they(appear.
Monsters)in
Sci9Fi

King(Kong((1933)Them((1954)Godzilla((1954)
Record:I120Im
Tarantula((1955)
Thedeadly
mantis
(1957)

20
?

Ley%cuadrado%cúbica
Cuando'un'objeto'crece'sin'
cambiar'de'forma,'su'
superficie'crece'como'el'
cuadrado'de'alguna'longitud'
característica'
(por'ejemplo,'su'altura)'
mientras'que'el'volumen'
crece'como'el'cubo'de'dicha'
cantidad.
Galileo'(1564B1642)
¿Qué)se)podemos)deducir)de)la)ley?

3
2
~)(
~)(
rrV
rrS
3
2
8~)2(
4~)2(
rrV
rrS
⋅⋅
⋅⋅

19571958

250)Hz
150)Hz

ρ
ρ
µ S
L
SL
==
211

∝∝ L
SL
ν
µ
ν
T
L2
1
=
AllometryIisItheIstudyIofI
theIrelationshipIbetweenI
sizeIandIshape.

2−
∝Lν

2−
∝Lν

Dimension
Topological.Dimension
•Points.(or.disconnected.collections.of.them).have.topological.
dimension.0.
•Lines.and.curves.have.topological.dimension.1.
•2>D.things.(think.filled.in.square).have.topological.dimension.2.
•3>D.things.(a.solid.cube).have.topological.dimension.3.

intuitive:)length,)area,)volume
rescaleIby
aIfactorIb
lengthIs
Fractal)vs.)integer)dimension
b·s
b
2
·A
areaIA

intuitive:)length,)area,)volume
rescaleIby
aIfactorIb
lengthIs
b
2
·A
areaIA
Fractal)vs.)integer)dimension
b
1
·s
D

Dimensions.of.objects
•Consider.objects.in.1,.2.and.3.dimensions:
DI=I1 DI=I2 DI=I3
•Reduce.length.of.ruler.by.factor,.r
rI=I1/2
NI=I2
NI=I4
NI=I8

•Quantity.increases.by.N.=.(1/r)
D
rI=I1/2
rI=1/3
NI=I2
NI=I3
NI=I4
NI=I9
NI=I8
NI=I27
()
()r
N
D
/1log
log
=
()
()
()
()
1
3log
3log
2log
2log
===D
()
()
()
2
3log
9log
2log
)4log(
===D
()
()
()
3
3log
27log
2log
)8log(
===D

1IIIIIIIIIIIIII1I
r N
Sierpinsky)revisited

1IIIIIIIIIIIIII1I
r N
1/2 3
Sierpinsky)revisited

1IIIIIIIIIIIIIIIIII1I
r N
1/2 3
1/4 9
Sierpinsky)revisited

1IIIIIIIIIIIII1I
r N
1/2 3
1/4 9
1/8 27
k
0
1
2
3
rI=I2
2k
NII=I3
k
Sierpinsky)revisited
NI=(1/r)
DI
()
()r
N
D
/1log
log
=
()
()
()
()2log
3log
2log
3log
==
k
k
D

Fractal)vs.)integer)dimension
585.1
)2log(
)3log(
D ≈=
“moreIthanIaIlineI–lessIthanIanIarea”
What’sIspecialIaboutIfractalsIisIthatItheI
“dimension”IisInotInecessarilyIaIwholeInumber

“Clouds are not spheres,
mountains are not cones,
coastlines are not circles, and
bark is not smooth, nor does
lightning travel in a straight
line.”
BenoitIB.IMandelbrot
Geometric scale invariance and fractal geometry
«UnIfractalIesIunIobjetoI
matemáticoIcuyaI
dimensiónIdeIHausdorffesI
siempreImayorIaIsuI
dimensiónItopológica».

KochIisland:I
scaleIby
factorIb=3
lengthIs
lengthI4Is
2619.1
)3log(
)4log(
D ≈=
Fractal)vs.)integer)dimension

N(ε)=I2
k
whereIkIisItheIiterationI
AndIε=(1/3)
k
D=ln(2)/ln(3)I=I0.6309…
N(ε)=I8
k
whereIkIisItheIiterationI
AndIε=(1/3)
k
D=ln(8)/ln(3)I=I1.8927…
TheICantorISetIisItheIdustIofIpointsI
obtainedIasItheIlimitIofIthisIsuccessionI
ofIsegments
ThisIisIalreadyItheIlimitIofI
successionIofIiterations
N.=.(1/r)
D

Self9similarity)in)nature

Romanesco.–
a.cross.between.broccoli.
and.cauliflower
Self9similarity)in)nature

Self9similarity)in)nature

FractalIconceptsIcharacterizeI
thoseIobjectsIinIwhichI
properly)scaledportionsIareI
identicalItoItheIoriginalI
object.ICanIbeIidentical)in)
deterministic)or)statistical)
sense.
Self9Similarity:)
Geometrical)and)Statistical

LaIgranIolaIdeIKanagawa

Scale&Laws...&Power&Laws
α−
⋅=rBrQ)(
.........
2−
∝Lν
Q&(r) Log&Q&(r)
r Log&r
BrrQ loglog)(log +−=α

How.long.is.the.coast.of.Britain?
Suppose.the.coast.of.Britain.is.measured.using.a.200.km.ruler,.specifying.that.
both.ends.of.the.ruler.must.touch.the.coast..Now.cut.the.ruler.in.half.and.
repeat.the.measurement,.then.repeat.again:.
B.IB.IMandelbrot,IScience’1967
Scale-dependent length.

Compass o ruler method:
How)Long)is)the)Coastline)of)Britain?
rI=ILengthIofILineISegmentsIinIKm
Q(r)I=IN(r)IrI=TotalILengthIinIKm
r r

How)Long)is)the)Coastline)of)Britain?
RichardsonI1961ITheIproblemIofIcontiguity:IAnIAppendixItoIStatistics*
of*Deadly*Quarrels*General*Systems*Yearbook**6:1392187
Log
10
(Total)Length)in)Km)
CIRCLE
SOUTHIAFRICANIICOAST
4.0
3.5
3.0
1.0 1.5 2.0 2.5 3.0 3.5
Log
10(Length)of)Line)Segments)in)Km)

Scaling
The*value&measuredfor*a*property,*
such*as*length,*surface,*or*volume,**
depends&on&the&resolutionat*which*it*
is*measured.*
How*depends*is*called*the*
scaling&relationship.

How)Long)is)the)Coastline)of)Britain?
RichardsonI1961ITheIproblemIofIcontiguity:IAnIAppendixItoIStatistics*
of*Deadly*Quarrels*General*Systems*Yearbook**6:1392187
Log
10
(Total)Length)in)Km)
CIRCLE
SOUTHIAFRICANIICOAST
4.0
3.5
3.0
1.0 1.5 2.0 2.5 3.0 3.5
Log
10(Length)of)Line)Segments)in)Km)
25.0
)(

∝rrL

Statistical)Self9Similarity
InIrealIworldIareIusuallyInotIexactIsmallerIcopiesIofItheI
wholeIobject.ITheIvalueIofIstatisticalIpropertyIQ(r)I
measuredIatIresolutionIr,IisIproportionalItoItheIvalueIQ(ar)I
measuredIatIresolutionIar.
Q(ar))=)kQ(r)
pdfI[Q(ar)]I=IpdfI[kQ(r)]
d
)()()(
;)(
25.025.025.025.0
25.0
rLarAaraAraL
rArL
⋅=⋅⋅=⋅⋅=⋅
⋅=
−−−−

Self9SimilarityImplies)a)Scaling)Relationship
Q)(r))=)B)r
b
Q)(ar))=)k)Q(r) Q)(r))=)B)r
b
Self9Similarity)can)be)satisfied)by)the)power)
law)scaling,)the)simplest)and)most)common)
form)of)the)scaling)relationship:
Proof:IusingItheIscalingIrelationshipItoIevaluateIQ(r)IandIQ(ar)
Q)(r))=)B)r
b)
Q)(ar))=)B)a
b
r
b
if))))k)=)a
b
then))))Q)(ar))=)k)Q)(r)

Power)Law
measurement
r Log&r
Logarithm
ofI
theImeasuremnt
ResolutionIusedItoImakeI
theImeasurement
LogarithmIofItheIresolutionI
usedItoImakeItheI
measurement
Suchpowerlawscalingrelationshipsare.characteristicof.fractals.Powerlaw
relationshipsare.foundso.oftenbecauseso.manythingsin.natureare.fractal.
ScaleLawsand&PowerLaws
α−
⋅=rBrQ)( BrrQ loglog)(log +−=α

Mass (Perimeter)
3
DoubleItheIsizeI OctupleIMass
DimensionI=I3
SolidISpheres
"EuclideanIObject"
3
3
23
4
3
4
~
2
!
"
#
$
%
&
==
=
π
ππρ
π
P
RVM
RP

CrumbledIPaperIBalls
"Non2EuclideanIObjects"
M.A.F.Gomes,I“FractalIgeometryIinIcrumpledIpaperIballs”
Am.J.Phys.I55,I6492650I(1987).
R.H.KoandIC.P.Bean,I“AIsimpleIexperimentIthatI
demonstratesIfractalIbehavior”,IPhys.*Teach.29,I78I(1991).

CrumbledIPaperIBalls
"Non2EuclideanIObjects"
Mass (Perimeter)
Dimension
log(Mass)I Dimensionlog(Perimeter)

L.H.F.ISilvaIandIM.T.IYamashita,I“TheIdimensionIofItheIporeIspaceIinIsponges,”I
EuropeanIJournalofIPhysicsI30:I1352137,I2009I.
PorIcierto,IlosIgeólogosIsuelenIutilizarI
esteItipoIdeIideaIparaIcaracterizarIlaI
porosidadIdeIrocasIyIsuIpermeabilidadI
(AlexisIMojica,ILeomarAcosta,I“LaI
porosidadIdeIlasIrocasIyIsuInaturalezaI
fractal,”IInvet.Ipens.Icrit.I4:I88293,I2006I).
SeIrecortanImuchosIcubitosIdeIesponjaI
deIladoIprogresivamenteImayor,IporI
ejemplo,desdeI1IcmIdeIlado,I2Icm,I3I
cm,IhastaIdondeIpodamos.IPesamosIlasI
esponjasIconIunaIbalanza,IluegoIlasI
sumergimosIenIaguaIyIlasIvolvemosIaI
pesar.ILaIdiferenciaIdeImasaIentreIlaI
esponjaIsecaIyIlaImojada.IDibujandoI
estaIdiferenciaIenIfunciónIdelIladoIenI
escalaIdoblementeIlogarítmicaIseI
observaráIqueIlaIdimensiónIfractalIdeIlaI
esponjaIesIDI=I2.95,ImenorIqueI3,I
resultadoIdeIlaIexistenciaIdeIlosIporos.

Object) Set
Property) Distribution
Mean)size)o)characteristic)size

66
WhatIisItheInormalI
lengthIofIaIpenis?I

67
WhileIresultsIvaryIacrossI
studies,ItheIconsensusIisIthatI
theImeanIhumanIpenisIisI
approximatelyI12.9)–15)cminI
lengthIwithIaI95%IconfidenceI
intervalIofI(10.7Icm,I19.1Icm).

Mean
Non)9Fractal
More)Data

69
Fractal?

Self-similarity in geology
From:ID.ISornette,ICriticalIPhenomenaIinINaturalISciencesI(2000)

Self-similarity in geology
From:ID.ISornette,ICriticalIPhenomenaIinINaturalISciencesI(2000)

Cloud perimeters over 5
decades yield D ≈ 1.35
(Lovejoy, 1982)

Power)laws,)Pareto)distributions)and)Zipf’s)law
M.IE.IJ.INewman

WWW Nodes:WWW pages
Links:URL links
P(k)'~'k
B2.1
Scale9Free)Networks

77
?

The)Average)Depends)on)the)
Amount)of)Data)Analyzed
eachIpiece

The)Average)Depends)on)the)
Amount)of)Data)Analyzed
or
average)
size
number)of)pieces)
included
average)
size
number)of)pieces)
included
ContributionsItoItheImeanIdominatedI
byItheInumberIofIsmallestIsizes.I
ContributionsItoItheImeanIdominatedI
byItheInumberIofIbiggestIsizes.I
0→µ
∞→µ

Non9Fractal
LogIavg
densityIwithinI
radiusIr
LogIradiusIr

Fractal
LogIavg
densityI
withinI
radiusIr
LogIradiusIr
.5
91.0
92.0
91.5
.51.01.52.02.53.03.54.04.55.05.56.00
92.5
0
Meakin)1986)In)On&Growth&and&Form:&Fractal&and&Non@Fractal&Patterns&in&
Physics&Ed.)Stanley)&)Ostrowsky,)Martinus)Nijoff)Pub.,)pp.)1119135
When)the)moments,)such)as)the)mean)and)variance,)
don’t)exist,)what)should)I)measure?)The)exponent...

Fractals.in.Nature
Electrical
Discharge from
Tesla Coil

Fractals.in.Nature
Lichtenberg Figure
Created by exposing plastic rod to electron beam & injecting charge
into material. Discharged by touching earth connector to left hand end

Viscous)fingering
Electrodeposition

Diffusion-limited aggregation (DLA)
T.A.IWitten,IL.M.ISanderI1981I

Statistical scale invariance of DLA
P.IMeakin,IFractals,IscalingIandIIgrowthIfarIfromIequilibrium

Mass9length)relation)
M
1 R
1
D)))))
M
2 R
2
D)

Fractal
LogIavg
densityI
withinI
radiusIr
LogIradiusIr
.5
91.0
92.0
91.5
.51.01.52.02.53.03.54.04.55.05.56.00
92.5
0
Meakin)1986)In)On&Growth&and&Form:&Fractal&and&Non@Fractal&Patterns&in&
Physics&Ed.)Stanley)&)Ostrowsky,)Martinus)Nijoff)Pub.,)pp.)1119135
When)the)moments,)such)as)the)mean)and)variance,)
don’t)exist,)what)should)I)measure?)The)exponent...

Box9counting
∙CoverItheIobjectIbyI
boxesIofIsizeII∊
<II∊>
∙IcountInon2emptyIboxes
∙IrepeatIforImanyII∊

Measuring)fractal)dimension
∙coverItheIobjectIbyI
boxesIofIsizeII∊
<∊>
∙IcountInon2emptyIboxes
∙IrepeatIforImanyII∊
box9counting:Iresolution2dependentImeasurementI

Measuring)fractal)dimension
∙coverItheIobjectIbyI
boxesIofIsizeII∊
∙IcountInon2emptyIboxes
∙IrepeatIforImanyII∊
box9counting:Iresolution2dependentImeasurementI
∙IconsiderItheInumberI
nIofInon2emptyIboxes
asIaIfunctionIofI∊
(inItheIlimitI∊→0)

Fractalsand)Chaos.
LarryIS.ILiebovitch.
Fractals,)Chaos,)
Power)Laws.
ManfredISchroederI