Fransan, pyrunas omeclare of organic compounds.pptx

Kawalyasteven 36 views 22 slides Aug 25, 2024
Slide 1
Slide 1 of 22
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22

About This Presentation

Fransan and pyrunas molecular nomeclature


Slide Content

Bioactive Furans, Pyrroles and Thiophenes N O 2 Me 2 N S O N ranitidine H N HMe • Ranitidine (Zantac®, GSK) is one of the biggest selling drugs in history. It is an H 2 -receptor antagonist and lowers stomach acid levels - used to treat stomach ulcers O N Ph ketorolac C O 2 H • Ketorolac (Toradol®, Roche) is an analgesic and anti-inflammatory drug Me N S banminth N • Pyrantel (Banminth®, Phibro) is an anthelminthic agent and is used to treat worms in livestock 61

Drugs Containing a Furan/Thiophene/Pyrrole Me O 2 C N S Cl O 2 N O N N N H O O Name: Plavix 2008 Sales: $3.80 billion 2008 Ranking: 3 branded Company: Bristol-Myers Squibb Disease: Stroke and heart attack risk N H O Name: Nitrofurantoin 2008 Sales: $92 + 72 million 2008 Ranking: 119 and 149 generic Company: N/A Disease: Antibiotic for urinary tract infections F H O 2 C Ph S Name: Cymbalta 2008 Sales: $2.17 billion 2008 Ranking: 14 branded Company: Eli Lilly Disease: Depression H O H O N Name: Lipitor 2008 Sales: $5.88 billion 2008 Ranking: 1 branded Company: Pfizer Disease: Lowers LDL levels N HPh O 62

Furans, Pyrroles and Thiophenes - Structure Structure β α X O N H • 6 π electrons, planar, aromatic, isoelectronic with cyclopentadienyl anion Resonance Structures δ− δ− etc. δ− δ− X X X X δ + • Electron donation into the ring by resonance but inductive electron withdrawal 1.44 Å 1.43 Å 1.42 Å 1.35 Å 1.37 Å 1.37 Å 0.71 D 1.55 D 0.52 D 1.37 Å O 1.38 Å N 1.71 Å S H 1.68 D 1.57 D 1.87 D O N S H • O and S are more electronegative than N and so inductive effects dominate S 63

Furans - Synthesis Paal Knorr Synthesis R 1 R 1 O O H heat O R 2 R 1 2 R R 1 O O H H H H O R 2 R 2 R 1 R 1 O O H H O O H 2 R 2 R 2 • The reaction is usually reversible and can be used to convert furans into 1,4-diketones • A trace of acid is required - usually TsOH ( p -MeC 6 H 4 SO 3 H) 64

Furans - Synthesis Feist-Benary Synthesis (“3+2”) Et O 2 C O δ + Me δ + Me O Cl NaOH aq., rt Et O Me Et O 2 C O Me Et O 2 C Me O Cl Me O H Et O 2 C Me Me O Cl O Me O H H 2 C Me − H 2 O O Me O H Et O 2 C Cl O Me O isolable • The product prior to dehydration can be isolated under certain circumstances • Reaction can be tuned by changing the reaction conditions 65

Furans - Synthesis Modified Feist-Benary I Et O 2 C O Me O NaI, NaOEt, EtOH Et O 2 C Me δ + Me Et O 2 C δ + Cl Me I Et O 2 C − H 2 O Me Me Me Et O 2 C O O Me Et O Et O 2 C Me O O H O Me Me O O O H Me O • Iodide is a better leaving group than Cl and the carbon becomes more electrophilic • The Paal Knorr sequence is followed from the 1,4-diketone onwards • The regiochemical outcome of the reaction is completely altered by addition of iodide 66

Thiophenes - Synthesis Synthesis of Thiophenes by Paal Knorr type reaction (“4+1”) Me Me Me Ph O O Me P 4 S 10 Me Me Me Ph S O Me Ph O S S Ph • Reaction might occur via the 1,4- bis -thioketone 67

Pyrroles - Synthesis Paal Knorr Synthesis (“4+1”) Me Me O O NH 3 , C 6 H 6 , heat Me Me Me O H N H H 1 R Me Me Me O H 2 N R 2 R 1 R 2 N N N H H O H H • Ammonia or a primary amine can be used to give the pyrrole or N -alkyl pyrrole 68

Pyrroles - Synthesis Knorr Pyrrole Synthesis (“3+2”) Et O 2 C O Me Me O 2 C O N H 2 H 2 N O Me Me O N H 2 Et O 2 KOH aq. H O 2 C Me C Me N H 53% N N Me • Use of a free amino ketone is problematic - dimerisation gives a dihydropyrazine H O Me Et O C Me Et O 2 C O Me Et O 2 C O N H 3 Cl 2 NaOH aq. Et O 2 C Et O 2 C via N Et O 2 C H Et O 2 C O Me or N H 2 O Et O 2 C N H • Problem can be overcome by storing amino carbonyl compound in a protected form • Reactive methylene partner required so that pyrrole formation occurs more rapidly than dimer formation 69

Pyrroles - Synthesis Liberation of an Amino Ketone in situ by Oxime Reduction Et O 2 C O Me Me O N O H Zn, AcOH or Na 2 S 2 O 4 aq. (sodium dithionite) Et O 2 C Me Me N H Preparation of α-Keto Oximes from β-Dicarbonyl Compounds H O O O Et O O O Et N O H NaNO 2 , H (HNO 2 ) O O O Et H 2 O N O O O H O Et N O 70

Pyrroles - Synthesis One-Pot Oxime Reduction and Pyrrole Formation O O O Et O 2 C O Et C O 2 Et C O 2 Et Zn, AcOH N O H Hantzsch Synthesis of Pyrroles (“3+2”) Cl Et O 2 C O δ + Me Et O 2 C δ + Me O Cl Me N H 2 NH 3 aq. rt to 60 °C Et O 2 C Et O 2 C − H 2 O Me Me Me Et O 2 C Me O Me N H C O 2 Et H Et O 2 C Me O Me N H Et O 2 C Me O N N O H Me N H 2 H H 41% • A modified version of the Feist-Benary synthesis and using the same starting materials: an α-halo carbonyl compound and a β-keto ester 71

Furans, Pyrroles Thiophenes - Electrophilic Substitution Electrophilic Substitution - Regioselectivity − H α X β X E E E X H X E H X X E H X E H − H X E E H X E • Pyrrole > furan > thiophene > benzene • Thiophene is the most aromatic in character and undergoes the slowest reaction • Pyrrole and furan react under very mild conditions • α-Substitution favoured over β-substitution more resonance forms for intermediate and so the charge is less localised (also applies to the transition state) • Some β-substitution usually observed - depends on X and substituents N O 2 AcONO 2 X N O 2 X X = N H 4:1 X = O 6:1 X 72

Furans - Electrophilic Substitution Nitration of Furans AcONO 2 , <0 °C O (Ac 2 O, HNO 3 ) N O 2 N O 2 Ac O O H H Ac O O isolable N O 2 H N pyridine, heat − AcOH N O 2 O H • Nitration can occur by an addition-elimination process N O 2 O • When NO 2 BF 4 is used as a nitrating agent, the reaction follows usual mechanism Bromination of Furans Br 2 , dioxan, 0 °C O Br Br Br Br O H Br − HBr Br H O H O 80% Br • Furan reacts vigorously with Br 2 or Cl 2 at room temp. to give polyhalogenated products 73 • It is possible to obtain 2-bromofuran by careful control of temperature

Furans - Electrophilic Substitution Friedel-Crafts Acylation of Furan O Me Ac 2 O, SnCl 4 , Ac 2 O, SnCl 4 , O H 3 PO 4 cat., 20 °C 150 °C Me O O α : β 6800:1 Me Me O Me O 77% Me • Blocking groups at the α positions and high temperatures required to give β acylation Vilsmeier Formylation of Furan O Mannich Reaction of Furans CH 2 O, Me 2 NH.HCl O O Me Me 2 NCO, POCl 3 , 0 to 100 °C O 76% CH 2 N Me 2 O Me O H H N Me 2 O 66% N Me 2 74

Thiophenes - Electrophilic Substitution Nitration of Thiophenes N O 2 AcONO 2 S S N O 2 S • Reagent AcONO 2 generated in situ from c-HNO 3 and Ac 2 O Halogenation of Thiophenes Br S Br Br 2 , Et 2 O, 48% HBr, − 10 → 10 °C S Br 2 , Et 2 O, 48% HBr, − 25 → − 5 °C S Br • Occurs readily at room temperature and even at −30 °C • Careful control or reaction conditions is required to ensure mono-bromination 75

Pyrroles - Electrophilic Substitution Nitration of Pyrroles AcONO 2 AcOH, − 10 °C N N H H 51% N O 2 N O 2 N H 13% • Mild conditions are required (c-HNO 3 and c-H 2 SO 4 gives decomposition) Vilsmeier Formylation of Pyrroles N Cl H H Me O N Me H Me N Me POCl 3 N H Me O P Cl 2 N Me H H Cl N Me 2 N H Me Cl N Me H K 2 CO 3 aq. H N Me 2 N H 83% 76 H O

Pyrroles - Porphyrin Formation O H 2 N R 1 R N H H H N N N H H H R 1 O H N R 2 H N N H H R 1 O H 2 R 2 R 2 N R 1 R 2 R 1 R 2 R 1 , R 2 = H N H H N N H H N N H H N N H H N R 1 N H N N H N H no extended aromaticity 18 π-electron system • The extended aromatic 18 π-electron system is more stable than that having four isolated aromatic pyrroles 77

Porphyrin Natural Products C O 2 H N N H O 2 C Fe N N H 2 N N H N N Mg N N porphobilinogen H O 2 C C O 2 H haem Me O 2 C O O O C 20 H 39 chlorophyll- a • The pigment haem is found in the oxygen carrier haemoglobin • Chlorophyll- a is responsible for photosynthesis in plants • Both haem and chlorophyll- a are synthesised in cells from porphobilinogen 78

Furans, Pyrroles Thiophenes - Deprotonation Metallation n -BuLi X Bu Deprotonation of Pyrroles R M H H X = O pK a (THF) 35.6 X = N R pK a (THF) 39.5 X = S pK a (THF) 33.0 M X α >> β Li M N H pK a (THF) 39.5 N N N pK a (THF) 17.5 M • Free pyrroles can undergo N or C deprotonation • Large cations and polar solvents favour N substitution • A temporary blocking group on N can be used to obtain the C-substituted compound 79

Furans, Pyrroles Thiophenes - Directed Metallation Control of Regioselectivity in Deprotonation Y n -BuLi X X Y Li Bu H Y Li X Common directing groups: C O 2 H( Li ), CH 2 O Me, C O N R 2 , CH( O R) 2 Synthesis of α,α’-Disubstituted Systems Y n -BuLi E 1 X X Use of a Trialkylsilyl Blocking Group Y Y n -BuLi n -BuLi Me 3 SiCl E Y 1 E n -BuLi E 2 Y 2 E F X Y E 1 Y X X Si Me 3 E X Si Me 3 E X 80

Furans - Synthesis of a Drug Preparation of Ranitidine (Zantac®) Using a Mannich Reaction Me 2 NH.HCl, Me 2 N CH 2 O, rt O O furfural Me 2 N S O N ranitidine H O N O 2 N HMe O H N O 2 Me S N HMe Me 2 N O O H HS(CH 2 ) 2 NH 2 , c-HCl, heat S O N H 2 • Furfural is produced very cheaply from waste vegetable matter and can be reduced to give the commercially available compound furfuryl alcohol • The second chain is introduced using a Mannich reaction which allows selective substitution at the 5-position • The final step involves conjugate addition of the amine to the α,β-unsaturated nitro compound and then elimination of methane thiol 81

END