free electron fermi gas_supp_123456789abcdefghij.pptx

ngurahayuketutumiati1 0 views 28 slides Oct 08, 2025
Slide 1
Slide 1 of 28
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28

About This Presentation

free electron fermi gas


Slide Content

Free Electron Fermi Gas

CONTENTS Energy Levels in One Dimension Effect of Temperature on the Fermi-Dirac Distribution Free Electron Gas in Three Dimensions Heat Capacity of the Electron Gas Electrical Conductivity and Ohm’s Law Motion in Magnetic Fields Thermal Conductivity of Metals Nanostructures .

INTRODUCTION Free electron model : Works best for alkali metals (Group I: Li, Na, K, Cs, Rb ) Na: ionic radius ~ .98A, n.n . dist ~ 1.83A.

Successes of classical model: Ohm’s law. σ / κ Failures of classical model: Heat capacity. Magnetic susceptibility. Mean free path . Quantum model ~ Drude model

Energy Levels in One Dimension Orbital: solution of a 1-e Schrodinger equation Boundary conditions: Particle in a box

Pauli-exclusion principle: No two electrons can occupy the same quantum state. Quantum numbers for free electrons: ( n , m s ) Degeneracy: number of orbitals having the same energy. Fermi energy ε F = energy of topmost filled orbital when system is in ground state. N free electrons:

Effect of Temperature on the Fermi-Dirac Distribution Fermi-Dirac distribution : Chemical potential μ = μ ( T ) is determined by   (Boltzmann distribution)

Free Electron Gas in Three Dimensions Particle in a box ( fixed ) boundary conditions: Periodic boundary conditions: Standing waves → → Traveling waves

→ ψ k is a momentum eigenstate with eigenvalue  k . N free electrons:

Density of states: →

Heat Capacity of the Electron Gas N free electrons: ( 2 orders of magnitude too large at room temp) Pauli exclusion principle → T F ~ 10 4 K for metal free electrons Using the Sommerfeld expansion formula

→ 3-D e-gas for 3-D e-gas              

for 3-D e-gas for 1-D e-gas  

Experimental Heat Capacity of Metals For T <<  and T << T F : el + ph Deviation from e-gas value is described by m th :      

Possible causes: e-ph interaction e-e interaction Heavy fermion: m th ~ 1000 m UBe 3 , CeAl 3 , CeCu 2 Si 2 .

Electrical Conductivity and Ohm’s Law Lorentz force on free electron: No collision: Collision time  : Ohm’s law Heisenberg picture: Free particle in constant E field

Experimental Electrical Resistivity of Metals Dominant mechanisms high T : e -ph collision. low T : e -impurity collision. phonon impurity Matthiessen’s rule : Sample dependent Sample independent Residual resistivity : Resistivity ratio :  imp ~ 1  ohm-cm per atomic percent of impurity K  imp indep of T ( collision freq additive )

Consider Cu with resistivity ratio of 1000: Impurity concentration: = 17 ppm Very pure Cu sample:  For T >  : See App.J From Table 3, we have   imp ~ 1  ohm-cm per atomic percent of impurity            

Umklapp Scattering Normal: Umklapp: Large scattering angle ( ~  ) possible Number of phonon available for U -process  exp (  U / T ) For Fermi sphere completely inside BZ, U -processes are possible only for q > q q = 0.267 k F for 1e /atom Fermi sphere inside a bcc BZ. For K ,  U = 23K,  = 91K  U -process negligible for T < 2K

Motion in Magnetic Fields Equation of motion with relaxation time  : be a right-handed orthogonal basis Let Steady state: = cyclotron frequency q = – e for electrons

Hall Effect →  Hall coefficient: electrons

Thermal Conductivity of Metals From Chap 5: Fermi gas: In pure metal, K el >> K ph for all T. Wiedemann-Franz Law : Lorenz number : for free electrons

for free electrons
Tags