Frequency distribtution curve

SriniVasan144 572 views 51 slides May 09, 2021
Slide 1
Slide 1 of 51
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30
Slide 31
31
Slide 32
32
Slide 33
33
Slide 34
34
Slide 35
35
Slide 36
36
Slide 37
37
Slide 38
38
Slide 39
39
Slide 40
40
Slide 41
41
Slide 42
42
Slide 43
43
Slide 44
44
Slide 45
45
Slide 46
46
Slide 47
47
Slide 48
48
Slide 49
49
Slide 50
50
Slide 51
51

About This Presentation

explains the formation of the frequency distribution curve


Slide Content

•Diagramming the Data
Picturecanspeak1000
words.Ratherthan
tellingaboutwhole
dramaofa20/20cricket
match,justthepicture
ontheright,isenough.
Statisticsalsogivesdata
intheformofdiagram
anditismoreelegantto
see.

•Diagrammatisationof Data
TypesofDiagram
Piediagram
Bargraph
FrequencyPolygon
Histogram
Cumulativefrequencycurve
Cumulativefrequencypercentagecurve

•Pie Diagram
Piediagramisintheformofcircle,
henceitisalsocalledascircle
diagram.Itcanbefragmentedinto
differentproportions,which
representsthedata.
InEnglish,thewordpiemeansatype
offoodmadewithmeat,vegetables
orfruitcoveredinpastryandbaked.

•Charting a Pie
Astudentgotthe
followingmarksinfive
subjects.Themaximum
marksineachsubjectis
100.
Letthedatabevisualized
inthepieform.
Totalangleinapie=360
0
Totalmarksforallsubjects=434/500
ForEnglish
For434marks=360
0
for60marks=60x360/434=49.7
0
≈50
0
LikeaboveTamil=66.6
0
≈67
0
Maths=82.9
0
≈83
0
Science=81.2
0
≈81
0
SocialScience=79.6
0
≈80
0

•Pie Chart
isualizedinthepieform.

•Assignment
DrawapiechartmanuallyhavingyourownXstandardmarks.

•Bar Graph

•Diagrammatisationof Data
TypesofDiagram
Piediagram
Bargraph
Frequencycurve
Histogram
Cumulativefrequencycurve
Cumulativefrequencypercentagecurve

•Bar Graph
InaBargraph,
thedatais
exhibitedthrough
rectangles.The
presentationcan
beeithervertical
orhorizontal.

•Charting a Bar Graph
Astudentgotthefollowing
marksinfivesubjects.The
maximummarksineachsubject
is100.
Letthedatabevisualizedinthe
formofbargraph.
InXaxis(Subjects)
1cm=1Subject
InYaxis(Marks)
1cm=20Marks

•Assignment
DrawaBarGraphmanuallyhavingyourownXstandardmarks.Draw
inapieceofgraphsheetandpasteitinyourassignment.

•Frequency Polygon
TypesofDiagram
Piediagram
Bargraph
FrequencyPolygon
Histogram
Cumulativefrequencycurve
Cumulativefrequencypercentagecurve

•Frequency Polygon
Thelinediagramof
frequencydistributionis
calledfrequencypolygon.
Thesuffixpolygonisdueto
thepresenceofmanyangles
inthecurve.Forexample,if
therearethreeanglesitis
triangle,fouranglesmeans
tetragonandsoon.

Add one above and below hypothetical class in the Frequency
Distribution Table. Since it is hypothetical, the frequency is zero.
Class f
90 -94 2
85 -89 2
80 -84 4
75 -79 8
70 -74 6
65 -69 11
60 -64 9
55 -59 7
50 -54 5
45 -49 0
40 -44 2
Class f
95 –99 0
90 -94 2
85 -89 2
80 -84 4
75 -79 8
70 -74 6
65 -69 11
60 -64 9
55 -59 7
50 -54 5
45 -49 0
40 -44 2
35 –39 0

Drawing Frequency Polygon.
InXaxis(Class)
1cm=1class
InYaxis(Frequency)
1cm=2frequency
Markthedotagainstfrequencyandits’
correspondingmid-pointoftheclass.
Drawalineconnectingallthedots.The
curveinordertotouchthexaxis,two
hypotheticalclassesweretaken.This
curveisknownasFrequencyPolygon
Class f
95 –99 0
90 -94 2
85 -89 2
80 -84 4
75 -79 8
70 -74 6
65 -69 11
60 -64 9
55 -59 7
50 -54 5
45 -49 0
40 -44 2
35 –39 0

•Assignment
Drawafrequencypolygonmanuallyhavingthedataofyour
frequencydistributiontabledrawnbefore.Drawfrequencypolygon
inapieceofgraphsheetandpasteitinyourassignment.

•Frequency Polygon
TypesofDiagram
Piediagram
Bargraph
FrequencyPolygon
Histogram
Cumulativefrequencycurve
Cumulativefrequencypercentagecurve

•Histogram
Thebargraphoffrequency
distributioniscalled
Histogram.

Frequency Distribution Table without Hypothetical Class
Class f
90 -94 2
85 -89 2
80 -84 4
75 -79 8
70 -74 6
65 -69 11
60 -64 9
55 -59 7
50 -54 5
45 -49 0
40 -44 2

Drawing a Histogram
InXaxis(Class)
1cm=1class
InYaxis(Frequency)
1cm=2frequency
Class f
90 -94 2
85 -89 2
80 -84 4
75 -79 8
70 -74 6
65 -69 11
60 -64 9
55 -59 7
50 -54 5
45 -49 0
40 -44 2

Drawing a Histogram
Thefirstclass40-44istakenasan
exampleforexplanation.Arectangleis
drawnbyhavingreallowerlimitofthe
class(39.5)totherealupperlimit
(44.5)asbreadthandthefrequency(2)
aslength.Likewisethesecond
rectangleisdrawnbyhaving44.5to
49.5asbreadthandfrequencyas
length(0).Thusarectangleforeach
classisdrawn.Thisseriesofrectangles
withrespecttofrequencydistribution
iscalledashistogram.

Drawing a Histogram
Thebaseofeachrectangleissame,
because
Baseαi(classinterval)
Thelengthoftheeachrectangleis
differentbecause
Lengthαf(frequency)
AreaofHistogramαN(Totalnumberof
scores)

•Assignment
Drawahistogrammanuallyhavingthedataofyourfrequency
distributiontabledrawnbefore.DrawHistograminapieceofgraph
sheetandpasteitinyourassignment.

•Frequency Polygon
TypesofDiagram
Piediagram
Bargraph
FrequencyPolygon
Histogram
Cumulativefrequencycurve
Cumulativefrequencypercentagecurve

•Cumulative Frequency Curve
Thecurvedrawnbyhaving
exactupperlimitofeach
classtoitscorresponding
cumulativefrequencyis
calledascumulative
frequencycurve.

Data
Class f cf
90 -94 2 56
85 -89 2 54
80 -84 4 52
75 -79 8 48
70 -74 6 40
65 -6911 34
60 -64 9 23
55 -59 7 14
50 -54 5 7
45 -49 0 2
40 -44 2 2
CumulativeFrequency
Thecumulativefrequencyis
thefrequencyofthatclass
plusthefrequenciesall
otherclassesarrangedin
ascendingorder.

Modified Data
Class f cf
90 -94 2 56
85 -89 2 54
80 -84 4 52
75 -79 8 48
70 -74 6 40
65 -6911 34
60 -64 9 23
55 -59 7 14
50 -54 5 7
45 -49 0 2
40 -44 2 2
35 –390 0
Inorderforthecurveto
touchthe‘x’axis,
hypotheticalclass35-39is
addedwhosefrequencyis
zero.
In‘x’axis
1cm=1class
In‘y’axis
1cm=10frequencies

•Cumulative Frequency Curve
Dotsaremarkedagainst
exactupperlimitofeach
classcorrespondingtoits
cumulativefrequency.The
curvethusobtainedby
joiningallthedotsiscalled
ascumulativefrequency
curve.

•Assignment
Drawacumulativefrequencycurvemanuallyhavingthedataofyour
frequencydistributiontable.Drawcumulativefrequencycurveina
pieceofgraphsheetandpasteitinyourassignment.

•Cumulative Frequency Percentage Curve
TypesofDiagram
Piediagram
Bargraph
FrequencyPolygon
Histogram
Cumulativefrequencycurve
Cumulativefrequencypercentagecurve

•Cumulative Frequency Percentage Curve
Thecurvedrawnbyhaving
exactupperlimitofeach
classtoitscorresponding
cumulative frequency
percentageiscalledas
cumulative frequency
percentagecurve.Thecurve
isalsoknownasogive.

Cumulative Frequency
Class f cf
90 -94 2 56
85 -89 2 54
80 -84 4 52
75 -79 8 48
70 -74 6 40
65 -6911 34
60 -64 9 23
55 -59 7 14
50 -54 5 7
45 -49 0 2
40 -44 2 2
CumulativeFrequency
Thecumulativefrequencyis
thefrequencyofthatclass
plusthefrequenciesall
otherlowerclasses
arrangedinascendingorder.

Cumulative Frequency Percentage
Classfcfcf%
90 -94256100
85 -8925496.42
80 -8445292.85
75 -7984885.71
70 -7464071.42
65 -69113460.71
60 -6492341.07
55 -5971425
50 -545712.5
45 -49023.5
40 -44223.5
Cf%
Totalfrequency=56
56istakenas100%
Percentageforcf2
=2/56x100=3.5
Percentageforcf7
=7/56x100=12.5

Data
Class f cf
90 -94 2 56
85 -89 2 54
80 -84 4 52
75 -79 8 48
70 -74 6 40
65 -6911 34
60 -64 9 23
55 -59 7 14
50 -54 5 7
45 -49 0 2
40 -44 2 2
35 –390 0
Inorderforthecurveto
touchthe‘x’axis,
hypotheticalclass35-39is
addedwhosefrequencyis
zero.
In‘x’axis
1cm=1class
In‘y’axis
1cm=20%

•Cumulative Frequency Percentage Curve
Dotsaremarkedagainst
exactupperlimitofeach
classcorrespondingtoits
cumulative frequency
percentage.Thecurvethus
obtainedbyjoiningallthe
dotsiscalledascumulative
frequencypercentagecurve.

•Percentile -Concept
Percentileisapointinthedatalinebelowwhichgivenpercentageof
scorelies.Letallthescoresbedividedinto100equalparts.Itis
calledaspercentilesandcanberepresentedasfollows;

•Percentile -Concept
The1
st
percentileisapointbelowwhich1%ofscoreliesandabovewhich
99%ofscorelies.ItisrepresentedasP
1.GoingfurtherP
20isapointbelow
which20%ofscoreliesandabovewhich80%ofscorelies.
WhataboutP
50?
P
50isapointbelowandabovewhich50%ofscorelies.Thispointis
otherwiseknownasMedian.

•Quartile -Concept
Thedatalinecanbedividedintofourquadrants.Eachquadrantis
termedasquartile.Q
1isfirstquartileandQ
2issecondquartileand
soon.Q
2isMedian.
Thiscanbediagrammaticallyrepresentedindatalineas

•Decile-Concept
Thedatalinecanbedividedinto10equalparts.Eachpointistermed
asaDecile.Q
1isfirstquartileandQ
2issecondquartileandsoon.Q
2
isMedian.
Thiscanbediagrammaticallyrepresentedindatalineas

•Percentile –Quartile -Decile

•Calculation of Median from ogive.
MedianorP
50orQ2orD5can
befoundfromogive.Mark50on
the‘y’axisandfromtherea
horizontallineisdrawntotouch
thecurveanditismarked.From
themarkedpointonthecurve,a
verticallineisdroppeddownto
touchthe‘x’axisandmarked.
Thismarkgivesthemedian
whichis64.5.
LikewiseP
25,P
75,P
90andP
10can
befoundout.

•Assignment
1.Drawacumulativefrequencypercentage
curvemanuallyhavingthedataofyour
frequencydistributiontable.Drawcumulative
frequencypercentagecurveinapieceof
graphsheetandpasteitinyourassignment.
2.CalculateMedian,QD,andKurtosisfrom
ogiveandusepiecesofgraphsheets
separatelyforfindingMedian,QDand
Kurtosis.
3.CalculateSkewnessmanuallyfromthe
valuesofmeanandstandarddeviationand
Medianfromogive.
QD=Q
3–Q
1/2
Ku = QD / P
90–P
10
Sk= 3(Mean -Median) / σ

•Musings
Withthis,ourclassforthissemestercomestoanend.Thisisan
opportunityprovidedbyyouuponme.Thanksforcomingalongwith
meinthisjourney.Ican’tsaythatsyllabusiscoveredbutithastobe
discoveredbyus.HavingsaidtotakeonWritingQuestions,
StandardizingaQuestionPaperandStatistics,Ihavedoneabit.

•Musings
Thesuccessoftheteachingliesinapplyingallthatyouhavelearntin
ALinunderstandingaboutmeasurement,assessmentand
evaluation,differenttypesofevaluation,writingGIO&SIOwith
respecttoBloom’staxonomy,writingquestions,preparingblueprint,
standardizingaquestionpaper,fairevaluationofthescripts,
understandwhatthedatasays,……

References
•Garrett, H. E. (1926). Statistics in psychology and education. Longman’s Green & Co
•Mathew, T.K., and Mollykutty, T.M. (2011). Science education -Theoretical bases of
teaching and pedagogic analysis -Physical Science and Natural Science.Rainbow Book
Publishers
•Mangal. S. K. (2014). Statistics in psychology and education. PHI Learning Private
Limited
•NCERT. (2013). Teaching of science.
•RadhaMohan. (2007). Teaching of physical science. (3
rd
ed.). PHI Learning
•Rathinasabapathy, P. (2001). கல்வியில்தேர்வு[Examination in Education]. (2
nd
ed.). ShanthaPublishers.
•Srinivasan, P. (2011). அறிவியல்கற்பிே்ேல்[Teaching of science]. DDE, Tamil
Univeristy
•Images from google