Fuzzy inference systems

5,280 views 36 slides Jan 28, 2021
Slide 1
Slide 1 of 36
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30
Slide 31
31
Slide 32
32
Slide 33
33
Slide 34
34
Slide 35
35
Slide 36
36

About This Presentation

These slides present about Fuzzy Inference Systems.


Slide Content

Fuzzy Inference Systems
Course: Computational Intelligence Engineering (Soft Computing)
Prof. (Dr.) Pravat Kumar Rout
Department of EEE, ITER,
Siksha ‘O’ Anusandhan (Deemed to be University),
Bhubaneswar, Odisha, India
1

Definition 2
✓Fuzzyinference(reasoning)isthe
actualprocessofmappingfromagiven
inputtoanoutputusingfuzzylogic.
✓Theprocessinvolvesallthepiecesthat
wehavediscussedintheprevious
sections:membershipfunctions,fuzzy
logicoperators,andif-thenrules

Fuzzy Inference System
Fuzzyinferenceisamethodthatinterpretsthevaluesintheinputvectorand,based
onsomesetsofrules,assignsvaluestotheoutputvector.Infuzzylogic,thetruthof
anystatementbecomesamatterofadegree.
Fuzzyinferenceistheprocessofformulatingthemappingfromagiveninputtoan
outputusingfuzzylogic.Themappingthenprovidesabasisfromwhichdecisions
canbemadeorpatternsdiscerned.
Theprocessoffuzzyinferenceinvolvesallofthepiecesdescribedsofar,i.e.,
membershipfunctions,fuzzylogicoperators,andif-thenrules.
Twomaintypesoffuzzyinferencesystemscanbeimplemented:Mamdani-type
(1977)andSugeno-type(1985).Thesetwotypesofinferencesystemsvary
somewhatinthewayoutputsaredetermined.
3

4
Structure

5

6
Basic Structure

7
FUZZIFIER•Convertsthecrispinputtoa
linguisticvariableusingthemembership
functionsstoredinthefuzzyknowledge
base.Thisprocessisknownasfuzzification
.
Step-1 FuzzifyInputs

8
Aftertheinputsarefuzzified,youknowthedegreetowhicheachpartoftheantecedent
issatisfiedforeachrule.Iftheantecedentofagivenrulehasmorethanonepart,the
fuzzyoperatorisappliedtoobtainonenumberthatrepresentstheresultofthe
antecedentforthatrule.
Thisnumberisthenappliedtotheoutputfunction.
Theinputtothefuzzyoperatoristwoormoremembershipvaluesfromfuzzifiedinput
variables.Theoutputisasingletruthvalue.
Step-2 Apply Fuzzy
Operators

9
Step-3 Apply Implication Method

10
Infuzzylogicsystems,thefuzzy
knowledgebaserepresentsthefactsof
therulesandlinguisticvariablesbasedon
thefuzzysettheorysothattheknowledge
base systems will allow
approximatereasoning.

11
Step-4 Aggregate all inputs

12
Step-5 Defuzzify

13
•Defuzzificationistheprocessofproducing
aquantifiableresultinCrisplogic,given
fuzzysetsandcorrespondingmembership
degrees.
•Itistheprocessthatmapsafuzzysettoa
crispset.
•Itistypicallyneeded infuzzy
controlsystems.Thesewillhaveanumber
ofrulesthattransformanumberof
variablesintoafuzzyresult,thatis,the
resultisdescribedintermsofmembership
infuzzysets.
•Forexample,rulesdesignedtodecide
howmuchpressuretoapplymightresultin
"Decrease Pressure(15%),Maintain
Pressure(34%),IncreasePressure(72%)".
Defuzzificationisinterpretingthe
membershipdegreesofthefuzzysetsinto
aspecificdecisionorrealvalue.

14 Overall Fuzzy Inference Diagram

15

16
Afuzzyinferencesystem(FIS)is
asystemthatusesfuzzysettheory
tomapinputs(featuresinthecase
offuzzyclassification)tooutputs
(classes in the case
offuzzyclassification).

Steps of Fuzzy Inference System
The steps of fuzzy reasoning (inference operations upon fuzzy IF–THEN rules)
performed by FISs are:
1.Compare the input variables with the membership functions on the
antecedent part to obtain the membership values of each linguistic label. (this
step is often calledfuzzification.)
2. Combine (usually multiplication or min) the membership values on the
premise part to get firing strength (dereeof fullfillment) of each rule.
3. Generate the qualified consequents (either fuzzy or crisp) or each rule
depending on the firing strength.
4. Aggregate the qualified consequents to produce a crisp output. (This step is
called defuzzification.)
17

18
Steps of Fuzzy Inference System...

19

Mamdani-type inference
Mamdani-typeinferenceexpectstheoutputmembershipfunctionstobefuzzysets.
Aftertheaggregationprocess,thereisafuzzysetforeachoutputvariable,which
needsdefuzzification.
Itispossible,andsometimesmoreefficient,touseasinglespikeastheoutput
membershipfunctionratherthanadistributedfuzzyset.
This,sometimescalledasingletonoutputmembershipfunction,canbeconsidered
apre-defuzzifiedfuzzyset.
Itenhancestheefficiencyofthedefuzzificationprocessbecauseitgreatlysimplifies
thecomputationrequiredbythemoregeneralMamdanimethod,whichfindsthe
centroidofatwo-dimensionalfunction.Insteadofintegratingacrossthetwo-
dimensionalfunctiontofindthecentroid,theweightedaverageofafewdata
pointscanbeused.
20

MamdaniFuzzy Inference Systems
Mamdanifuzzyinferencewasfirstintroducedasamethodtocreateacontrol
systembysynthesizingasetoflinguisticcontrolrulesobtainedfromexperienced
humanoperators.InaMamdanisystem,theoutputofeachruleisafuzzyset.
SinceMamdanisystemshavemoreintuitiveandeasiertounderstandrulebases,
theyarewell-suitedtoexpertsystemapplicationswheretherulesarecreatedfrom
humanexpertknowledge,suchasmedicaldiagnostics.
Theoutputofeachruleisafuzzysetderivedfromtheoutputmembershipfunction
andtheimplicationmethodoftheFIS.Theseoutputfuzzysetsarecombinedintoa
singlefuzzysetusingtheaggregationmethodoftheFIS.Then,tocomputeafinal
crispoutputvalue,thecombinedoutputfuzzysetisdefuzzifiedusingoneofthe
methodsdescribedinDefuzzificationMethods.
21

22
1.DeterminethesetofFuzzyRules
2.Maketheinputsfuzzyusinginput
fuzzymembershipfunctions
3.Combined thefuzzifiedinputs
accordingtothefuzzyrulesfor
establishingarulestrength
4.Determinetheconsequentofthe
rulebycombiningtherulestrength
andtheoutputmembershipfunction
5.Combinealltheconsequentstoget
anoutputdistribution
6.Finally,a defuzzifiedoutput
distributionisobtained

23

24

25

MamdaniFuzzy Inference System
Intuitive
Well-suited to human input
More interpretable rule base
Have widespread acceptance
26

Sugenomethod of fuzzy inference
TheSugenomethodoffuzzyinferenceissimilartotheMamdanimethodin
manyrespects.
Thefirsttwopartsofthefuzzyinferenceprocess,fuzzifyingtheinputsand
applyingthefuzzyoperator,areexactlythesame.
ThemaindifferencebetweenMamdani-typeandSugeno-typefuzzy
inferenceisthattheoutputmembershipfunctionsareonlylinearorconstant
fortheSugeno-typefuzzyinference.
Atypicalfuzzyruleinafirst-orderSugenofuzzymodelhastheform.whereA
andBarefuzzysetsintheantecedent,whilep,q,andrareallconstants.
27

Continue...
Higher-orderSugenofuzzymodelsarepossible,buttheyintroducesignificant
complexitywithlittleobviousmerit.
Becauseofthelineardependence ofeachruleonthesystem’sinput
variables,theSugenomethodisidealforactingasaninterpolatingsupervisor
ofmultiplelinearcontrollersthataretobeapplied,respectively,todifferent
operatingconditionsofadynamicnonlinearsystems.
ASugenofuzzyinferencesystemisextremelywellsuitedtothetaskof
smoothlyinterpolatingthelineargainsthatwouldbeappliedacrosstheinput
space,i.e.,itisanaturalandefficientgainscheduler.
Similarly,aSugenosystemissuitableformodelingnonlinearsystemsby
interpolatingmultiplelinearmodels.
28

SugenoFuzzy Inference System
Sugenofuzzyinference,alsoreferredtoasTakagi-Sugeno-Kangfuzzyinference,
usessingletonoutputmembershipfunctionsthatareeitherconstantoralinear
functionoftheinputvalues.
ThedefuzzificationprocessforaSugenosystemismorecomputationallyefficient
comparedtothatofaMamdanisystem,sinceitusesaweightedaverageor
weightedsumofafewdatapointsratherthancomputeacentroidofatwo-
dimensionalarea.
29

30

31

32

33

SugenoFuzzy Inference System
Computationally efficient
Work well with linear techniques, such as PID control
Work well with optimization and adaptive techniques
Guarantee output surface continuity
Well-suited to mathematical analysis
34

35
Comparison between MamdaniFIS and SugenoFIS

36