Fuzzy inferencesystem2024 in engineering control

ssuser294dac 37 views 37 slides Jul 02, 2024
Slide 1
Slide 1 of 37
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30
Slide 31
31
Slide 32
32
Slide 33
33
Slide 34
34
Slide 35
35
Slide 36
36
Slide 37
37

About This Presentation

control


Slide Content

1
State of Libya
Al-Asmarya Islamic University
Faculty of Engineering
Electrical and Computer Engineering Department
Fuzzy Inferences System
Student:Mustafa EnwiderStudent:Ali Al-sharani
Student:Hisham Ali Student:Waleed Aleyan
Presentation of each of:

Fuzzy Inference System
.
Important Inference systems:
Mamdani
Sugeno
Sost Computing
2

Mamdani method
Themostcommonlyusedfuzzyinferencetechniqueistheso-called
Mamdanimethod.In1975,ProfessorEbrahimMamdaniof
LondonUniversitybuiltoneofthefirstfuzzysystemstocontrola
steamengineandboilercombination.Heappliedasetoffuzzy
rulessuppliedbyexperiencedhumanoperators.
.
lfuzzification of the input variables
lrule evaluation
laggregation of the rule outputs
ldefuzzification.
The Mamdani-style fuzzy inference process is performed in four steps:
Sost Computing
3

Sost Computing 4
We examine a simple two-input one-output problem that
includes three rules:

Sost Computing 5
Step 1: Fuzzification
Thefirststepistotakethecrispinputs,x1andy1
(projectfundingandprojectstaffing),anddetermine
thedegreetowhichtheseinputsbelongtoeachofthe
appropriatefuzzysets.SothatitisaProcesswhichmakesacrisp
quantityfuzzyCrispInput
0.1
0.7
1
0
y1
B1 B2
Y
CrispInput
0.2
0.5
1
0
A1 A2 A3
x1
x1 X
(x =A1) = 0.5
(x =A2) = 0.2
(y =B1) = 0.1
(y =B2) = 0.7
A1 =inadequate,A2=marginal,A3=adequate 
A(x=A3)=0.0
B1=small,B2=large

Sost Computing 6
Step 2: Rule Evaluation
Thesecondstepistotakethefuzzifiedinputs,
m
(x=A1)
=0.5,m
(x=A2)
=0.2,m
(y=B1)
=0.1andm
(y=B2)
=
0.7,andapplythemtotheantecedentsofthefuzzy
rules.Ifagivenfuzzyrulehasmultipleantecedents,
thefuzzyoperator(ANDorOR)isusedtoobtaina
singlenumberthatrepresentstheresultofthe
antecedentevaluation.Thisnumber(thetruthvalue)
isthenappliedtotheconsequentmembership
function.

Sost Computing 7
Toevaluatethedisjunctionoftheruleantecedents,
weusetheORfuzzyoperation.Typically,fuzzy
expertsystemsmakeuseoftheclassicalfuzzy
operationunion:

A

B
(x) = max [
A
(x), 
B
(x)]
Similarly, in order to evaluate the conjunction of the
rule antecedents, we apply the AND fuzzy operation
intersection:

A

B
(x) = min [
A
(x), 
B
(x)]

Sost Computing 8A3
1
0
X
1
y1
0
Y
0.0
x1
0
0.1
C1
1
C2
Z
1
0
X
0.2
0
0.2
C1
1
C2
Z
A2
x1
Rule 3:IFx isA1 (0.5)
A1
1
0
X
0
1
Zx1
THEN
C1 C2
1
y1
B2
0
Y
0.7
B1
0.1
C3
C3
C30.5 0.5
OR
(max)
AND
(min)
OR THENRule 1:IFx isA3 (0.0)
AND THENRule 2:IFx isA2 (0.2)
yisB1 (0.1) zisC1 (0.1)
yisB2 (0.7) zisC2 (0.2)
zisC3 (0.5)
Mamdani-style rule evaluation

Sost Computing 9
Nowtheresultoftheantecedentevaluationcanbe
appliedtothemembershipfunctionofthe
consequent.
nThemostcommonmethodofcorrelatingtherule
consequentwiththetruthvalueoftherule
antecedentistocuttheconsequentmembership
functionattheleveloftheantecedenttruth.This
methodiscalledclipping.Sincethetopofthe
membershipfunctionissliced,theclippedfuzzyset
losessomeinformation.However,clippingisstill
oftenpreferredbecauseitinvolveslesscomplexand
fastermathematics,andgeneratesanaggregated
outputsurfacethatiseasiertodefuzzify.

Sost Computing 10
nWhileclippingisafrequentlyusedmethod,scaling
offersabetterapproachforpreservingtheoriginal
shapeofthefuzzyset.Theoriginalmembership
functionoftheruleconsequentisadjustedby
multiplyingallitsmembershipdegreesbythetruth
valueoftheruleantecedent.Thismethod,which
generallyloseslessinformation,canbeveryuseful
infuzzyexpertsystems.

Sost Computing 11
Clipped and scaled membership functions1.0
0.0
0.2
Z Z
C2
1.0
0.0
0.2
C2
Degree of
Membership
Degree of
Membership

Sost Computing 12
Step 3: Aggregation of the rule outputs
Aggregationistheprocessofunificationofthe
outputsofallrules.Wetakethemembership
functionsofallruleconsequentspreviouslyclippedor
scaledandcombinethemintoasinglefuzzyset.
Theinputoftheaggregationprocessisthelistof
clippedorscaledconsequentmembershipfunctions,
andtheoutputisonefuzzysetforeachoutput
variable.

Sost Computing 130
0.1
1
C1
zisC1 (0.1)
C2
0
0.2
1
zisC2 (0.2)
0
0.5
1
zisC3 (0.5)
ZZZ
0.2
Z0

C3
0.5
0.1
Aggregation of the rule outputs

Sost Computing 14
Step 4: Defuzzification
Thelaststepinthefuzzyinferenceprocessis
defuzzification.Fuzzinesshelpsustoevaluatethe
rules,butthefinaloutputofafuzzysystemhastobe
acrispnumber.Theinputforthedefuzzification
processistheaggregateoutputfuzzysetandthe
outputisasinglenumber.

Sost Computing 15
nThereareseveraldefuzzificationmethods,but
probablythemostpopularoneisthecentroid
technique.Itfindsthepointwhereaverticalline
wouldslicetheaggregatesetintotwoequalmasses.
Mathematicallythiscentreofgravity(COG)can
beexpressedas:




b
a
A
b
a
A
COG
xxdx
xdx

Sost Computing 16
nCentroid defuzzification method finds a point
representing the centre of gravity of the fuzzy set, A,
on the interval, ab.
nAreasonableestimatecanbeobtainedbycalculating
itoverasampleofpoints.1.0
0.0
0.2
0.4
0.6
0.8
160170180190200
a b
210
A
150
X

Sost Computing 17
Centre of gravity (COG):4.67
5.05.05.05.02.02.02.02.01.01.01.0
5.0)100908070(2.0)60504030(1.0)20100(



COG
1.0
0.0
0.2
0.4
0.6
0.8
0 2030405010 70809010060
Z
Degreeof
Membership
67.4

Examples on Mamadani Method:
Ex.1
Ex.2

Steps Manual:

Sost Computing 24
Example 2:

Sost Computing 25

Sost Computing 26

Sost Computing 27

Sost Computing 28

Sost Computing 29

Sost Computing 30

Sost Computing 31

Sost Computing 32

Sost Computing 33

Sost Computing 34

Sost Computing 35
nMamdani-styleinference,aswehavejustseen,
requiresustofindthecentroidofatwo-dimensional
shapebyintegratingacrossacontinuouslyvarying
function.Ingeneral,thisprocessisnot
computationallyefficient.
nMichioSugenosuggestedtouseasinglespike,a
singleton,asthemembershipfunctionoftherule
consequent.Asingleton,,ormorepreciselyafuzzy
singleton,isafuzzysetwithamembership
functionthatisunityatasingleparticularpointon
theuniverseofdiscourseandzeroeverywhereelse.
Sugenofuzzy inference

Sost Computing 36
Sugeno-stylefuzzyinferenceisverysimilartothe
Mamdanimethod.Sugenochangedonlyarule
consequent.Insteadofafuzzyset,heuseda
mathematicalfunctionoftheinputvariable.The
formatoftheSugeno-stylefuzzyruleis
IF x is A
AND y is B
THEN z is f (x, y)
where x, y and z are linguistic variables; A and B are
fuzzy sets on universe of discourses X and Y,
respectively; and f (x, y) is a mathematical function.

Sost Computing 37
nMamdanimethodiswidelyacceptedforcapturing
expertknowledge.Itallowsustodescribethe
expertiseinmoreintuitive,morehuman-like
manner.However,Mamdani-typefuzzyinference
entailsasubstantialcomputationalburden.
nOntheotherhand,Sugenomethodiscomputationally
effectiveandworkswellwithoptimisationand
adaptivetechniques,whichmakesitveryattractivein
controlproblems,particularlyfordynamicnonlinear
systems.
How to make a decision on which method
to apply –Mamdanior Sugeno?
Tags