Fuzzy Membership Function

8,885 views 44 slides Jan 19, 2021
Slide 1
Slide 1 of 44
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30
Slide 31
31
Slide 32
32
Slide 33
33
Slide 34
34
Slide 35
35
Slide 36
36
Slide 37
37
Slide 38
38
Slide 39
39
Slide 40
40
Slide 41
41
Slide 42
42
Slide 43
43
Slide 44
44

About This Presentation

This presentation presents Type-1 fuzzy membership function, Type-2 fuzzy membership function (basic level).


Slide Content

Fuzzy Membership Function
Course: Computational Intelligence In Engineering (Soft Computing )
Prof. (Dr.) Pravat Kumar Rout
Department of EEE, ITER
Siksha ‘O’ Anusandhan (Deemed to be University),
Bhubaneswar, Odisha, India
1

Membership Function
Membershipfunctionscharacterizefuzziness(i.e.,alltheinformation
infuzzyset),whethertheelementsinfuzzysetsarediscreteorcontinuous.
Membershipfunctionscanbedefinedasatechniquetosolvepractical
problemsbyexperienceratherthanknowledge.
Membershipfunctionsallowustographicallyrepresentafuzzyset.Thex
axisrepresentstheuniverseofdiscourse,whereastheyaxisrepresentsthe
degreesofmembershipinthe[0,1]interval.Simplefunctionsareusedto
buildmembershipfunctions.
2

Continue…
Membershipfunctions(MFs)arethebuildingblocksoffuzzysettheory,i.e.,
fuzzinessinafuzzysetisdeterminedbyitsMF.Accordingly,theshapesofMFsare
importantforaparticularproblemsincetheyeffectonafuzzyinferencesystem.
Theymayhavedifferentshapesliketriangular,trapezoidal,Gaussian,etc.
Fuzzificationistheprocessofconvertingacrispinputvaluetoafuzzyvaluethatis
performedbytheuseoftheinformationintheknowledgebase.Althoughvarious
typesofcurvescanbeseeninliterature,Gaussian,triangular,andtrapezoidalMFs
arethemostcommonlyusedinthefuzzificationprocess.
Definition.Fuzzificationistheprocessoftransformingacrispsettoafuzzysetora
fuzzysettofuzzierset.Defuzzificationistheprocessofreducingafuzzysetintoa
crispsetorconvertingafuzzymemberintoacrispmember.
3

Continue...
Themembershipfunctionofafuzzysetisageneralizationoftheindicator
functioninclassicalsets.Infuzzylogic,itrepresentsthedegreeoftruthas
anextensionofvaluation.
Degreesoftruthareoftenconfusedwithprobabilities,althoughtheyare
conceptuallydistinct,becausefuzzytruthrepresentsmembershipin
vaguelydefinedsets,notlikelihoodofsomeeventorcondition.
MembershipfunctionswereintroducedbyZadehinthefirstpaperonfuzzy
sets(1965).
4

Formal Definition of membership function
5

6

7

Basics of Membership Function 8

9

10
Continue....

11
Fuzzy Singleton

12
Convex and Non-convex Fuzzy Sets
Bandwith

13
Continue....

14
Afuzzysetisdeterminedbyitsindeterminateboundaries,thereexistsanuncertainty
aboutthesetboundaries.Ontheotherhand,acrispsetisdefined
bycrispboundaries,andcontainthepreciselocationofthesetboundaries.

15
Crisplogic(crisp)isthesameasbooleanlogic(either0or1).Eitherastatementistrue(1)
oritisnot(0),meanwhilefuzzylogiccapturesthedegreetowhichsomethingistrue.

16

17

Fuzzy Function Block 18

Continue…19

Example-1
20

Example-2
21

Example-3 22

Example-423

Example-5 24

Example-6 25

26

27

Major Types of Membership Functions 28

Triangular Membership Function 29

Trapezoidal Membership Function 30

Gaussian Membership Function 31

Generalized Bell Membership Function 32

Different shapes of
Gaussian MFs with
different values of s
and m.
33Continue….

SigmoidalMembership Function 34
✓AsigmoidalMFisinherentlyopenrightorleft&
thus,itisappropriateforrepresentingconcepts
suchas“verylarge”or“verynegative”.
✓SigmoidalMFmostlyusedasactivation
functionofartificialneuralnetworks(NN).ANN
shouldsynthesizeacloseMFinordertosimulate
thebehaviorofafuzzyinferencesystem.

35Left –Right (LR) MF

2-D Membership Function
36

Continue...37

Composite and non-composite Membership
Function
38

Composite two-dimensional Membership
Functions based on min & max operations
39

40
Type-2 fuzzy sets and systems generalize standard Type-1 fuzzy sets and
systems so that more uncertainty can be handled.

41
Type-2Fuzzysets(T2FS)representalargeamountofuncertaintyand
complexity;however,thesebenefitsarecloselyrelatedtothedefinitionofits
footprintofuncertainty(FOU).

42
Footprint of
uncertainty (FOU).

43

44