Gate mathematics

4,412 views 183 slides Nov 02, 2016
Slide 1
Slide 1 of 231
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30
Slide 31
31
Slide 32
32
Slide 33
33
Slide 34
34
Slide 35
35
Slide 36
36
Slide 37
37
Slide 38
38
Slide 39
39
Slide 40
40
Slide 41
41
Slide 42
42
Slide 43
43
Slide 44
44
Slide 45
45
Slide 46
46
Slide 47
47
Slide 48
48
Slide 49
49
Slide 50
50
Slide 51
51
Slide 52
52
Slide 53
53
Slide 54
54
Slide 55
55
Slide 56
56
Slide 57
57
Slide 58
58
Slide 59
59
Slide 60
60
Slide 61
61
Slide 62
62
Slide 63
63
Slide 64
64
Slide 65
65
Slide 66
66
Slide 67
67
Slide 68
68
Slide 69
69
Slide 70
70
Slide 71
71
Slide 72
72
Slide 73
73
Slide 74
74
Slide 75
75
Slide 76
76
Slide 77
77
Slide 78
78
Slide 79
79
Slide 80
80
Slide 81
81
Slide 82
82
Slide 83
83
Slide 84
84
Slide 85
85
Slide 86
86
Slide 87
87
Slide 88
88
Slide 89
89
Slide 90
90
Slide 91
91
Slide 92
92
Slide 93
93
Slide 94
94
Slide 95
95
Slide 96
96
Slide 97
97
Slide 98
98
Slide 99
99
Slide 100
100
Slide 101
101
Slide 102
102
Slide 103
103
Slide 104
104
Slide 105
105
Slide 106
106
Slide 107
107
Slide 108
108
Slide 109
109
Slide 110
110
Slide 111
111
Slide 112
112
Slide 113
113
Slide 114
114
Slide 115
115
Slide 116
116
Slide 117
117
Slide 118
118
Slide 119
119
Slide 120
120
Slide 121
121
Slide 122
122
Slide 123
123
Slide 124
124
Slide 125
125
Slide 126
126
Slide 127
127
Slide 128
128
Slide 129
129
Slide 130
130
Slide 131
131
Slide 132
132
Slide 133
133
Slide 134
134
Slide 135
135
Slide 136
136
Slide 137
137
Slide 138
138
Slide 139
139
Slide 140
140
Slide 141
141
Slide 142
142
Slide 143
143
Slide 144
144
Slide 145
145
Slide 146
146
Slide 147
147
Slide 148
148
Slide 149
149
Slide 150
150
Slide 151
151
Slide 152
152
Slide 153
153
Slide 154
154
Slide 155
155
Slide 156
156
Slide 157
157
Slide 158
158
Slide 159
159
Slide 160
160
Slide 161
161
Slide 162
162
Slide 163
163
Slide 164
164
Slide 165
165
Slide 166
166
Slide 167
167
Slide 168
168
Slide 169
169
Slide 170
170
Slide 171
171
Slide 172
172
Slide 173
173
Slide 174
174
Slide 175
175
Slide 176
176
Slide 177
177
Slide 178
178
Slide 179
179
Slide 180
180
Slide 181
181
Slide 182
182
Slide 183
183
Slide 184
184
Slide 185
185
Slide 186
186
Slide 187
187
Slide 188
188
Slide 189
189
Slide 190
190
Slide 191
191
Slide 192
192
Slide 193
193
Slide 194
194
Slide 195
195
Slide 196
196
Slide 197
197
Slide 198
198
Slide 199
199
Slide 200
200
Slide 201
201
Slide 202
202
Slide 203
203
Slide 204
204
Slide 205
205
Slide 206
206
Slide 207
207
Slide 208
208
Slide 209
209
Slide 210
210
Slide 211
211
Slide 212
212
Slide 213
213
Slide 214
214
Slide 215
215
Slide 216
216
Slide 217
217
Slide 218
218
Slide 219
219
Slide 220
220
Slide 221
221
Slide 222
222
Slide 223
223
Slide 224
224
Slide 225
225
Slide 226
226
Slide 227
227
Slide 228
228
Slide 229
229
Slide 230
230
Slide 231
231

About This Presentation

gate mathematics notes


Slide Content

GATE 2017
ENGINEERING
MATHEMATICS

Common for
AE/AG/BT/CE/CH/EC/EE/IN/ME/MN/MT/PE/PI

Prepared by

K. Manikantta Reddy
E-mail:
[email protected]
Mobile: +91 96666 78922
M.Tech
Handwritten Notes

This book is intended to provide basic knowledge on
Engineering Mathematics to the GATE aspirants. Even though
the syllabus is same, the questions appearing in diffe rent
papers follows different patterns. So the GATE aspirants are
advised to go through their respective paper syllabus
(available in official GATE website) and previous qu estion
papers to understand the depth of the subject require d to
prepare for GATE exam. Most of the solved problems in this
material are the questions appeared in EC/EE/ME/CE/IN/ PI
papers. So the remaining branches students are advis ed to
solve the previous problems from their respective pa pers.
EE branch students are advised to prepare transform theory,
which is not available in this book.
This book is still under preparation. If you find any mistakes
in this, please inform me through an e-mail. Don’t share this
book without proper citation and credits.
Thank You

All The Best

SYLLABUS – GATE 2016

CIVIL ENGINEERING - CE
Linear Algebra: Matrix algebra; Systems of linear equations; Eigen values and Eigen vectors.

Calculus: Functions of single variable; Limit, continuity and differentiability; Mean value theorems,
local maxima and minima, Taylor and Maclaurin series; Evaluation of definite and indefinite
integrals, application of definite integral to obtain area and volume; Partial derivatives; Total
derivative; Gradient, Divergence and Curl, Vector identities, Directional derivatives, Line, Surface
and Volume integrals, Stokes, Gauss and Green’s theorems.

Ordinary Differential Equation (ODE): First order (linear and non-linear) equations; higher order
linear equations with constant coefficients; Euler-Cauchy equations; Laplace transform and its
application in solving linear ODEs; initial and boundary value problems.

Partial Differential Equation (PDE): Fourier series; separation of variables; solutions of
onedimensional diffusion equation; first and second order one-dimensional wave equation and two-
dimensional Laplace equation.

Probability and Statistics: Definitions of probability and sampling theorems; Conditional
probability; Discrete Random variables: Poisson and Binomial distributions; Continuous random
variables: normal and exponential distributions; Descriptive statistics - Mean, median, mode and
standard deviation; Hypothesis testing.

Numerical Methods: Accuracy and precision; error analysis. Numerical solutions of linear and non-
linear algebraic equations; Least square approximation, Newton’s and Lagrange polynomials,
numerical differentiation, Integration by trapezoidal and Simpson’s rule, single and multi-step
methods for first order differential equations.

1. MECHANICAL ENGINEERING – ME
2. METALLURGICAL ENGINEERING - MT
3. PRODUCTION AND INDUSTRIAL ENGINEERING - PI
Linear Algebra: Matrix algebra, systems of linear equations, eigenvalues and eigenvectors.

Calculus: Functions of single variable, limit, continuity and differentiability, mean value theorems,
indeterminate forms; evaluation of definite and improper integrals; double and triple integrals; partial
derivatives, total derivative, Taylor series (in one and two variables), maxima and minima, Fourier
series; gradient, divergence and curl, vector identities, directional derivatives, line, surface and
volume integrals, applications of Gauss, Stokes and Green’s theorems.

Differential equations: First order equations (linear and nonlinear); higher order linear differential
equations with constant coefficients; Euler-Cauchy equation; initial and boundary value problems;
Laplace transforms; solutions of heat, wave and Laplace's equations.

Complex variables: Analytic functions; Cauchy-Riemann equations; Cauchy’s integral theorem
and integral formula; Taylor and Laurent series. (Except for MT paper)

Probability and Statistics: Definitions of probability, sampling theorems, conditional probability;
mean, median, mode and standard deviation; random variables, binomial, Poisson and normal
distributions.

Numerical Methods: Numerical solutions of linear and non-linear algebraic equations; integration
by trapezoidal and Simpson’s rules; single and multi-step methods for differential equations.

ELECTRONICS AND COMMUNICATION ENGINEERING – EC
Linear Algebra: Vector space, basis, linear dependence and independence, matrix algebra, eigen
values and eigen vectors, rank, solution of linear equations – existence and uniqueness.

Calculus: Mean value theorems, theorems of integral calculus, evaluation of definite and improper
integrals, partial derivatives, maxima and minima, multiple integrals, line, surface and volume
integrals, Taylor series.

Differential equations: First order equations (linear and nonlinear), higher order linear differential
equations, Cauchy's and Euler's equations, methods of solution using variation of parameters,
complementary function and particular integral, partial differential equations, variable separable
method, initial and boundary value problems.

Vector Analysis: Vectors in plane and space, vector operations, gradient, divergence and curl,
Gauss's, Green's and Stoke's theorems.

Complex Analysis: Analytic functions, Cauchy's integral theorem, Cauchy's integral formula;
Taylor's and Laurent's series, residue theorem.

Probability and Statistics: Mean, median, mode and standard deviation; combinatorial probability,
probability distribution functions - binomial, Poisson, exponential and normal; Joint and conditional
probability; Correlation and regression analysis.

Numerical Methods: Solutions of non-linear algebraic equations, single and multi-step methods for
differential equations, convergence criteria.

ELECTRICAL ENGINEERING - EE
Linear Algebra: Matrix Algebra, Systems of linear equations, Eigenvalues, Eigenvectors.

Calculus: Mean value theorems, Theorems of integral calculus, Evaluation of definite and improper
integrals, Partial Derivatives, Maxima and minima, Multiple integrals, Fourier series, Vector identities,
Directional derivatives, Line integral, Surface integral, Volume integral, Stokes’s theorem, Gauss’s
theorem, Green’s theorem.

Differential equations: First order equations (linear and nonlinear), Higher order linear differential
equations with constant coefficients, Method of variation of parameters, Cauchy’s equation, Euler’s
equation, Initial and boundary value problems, Partial Differential Equations, Method of separation of
variables.

Complex variables: Analytic functions, Cauchy’s integral theorem, Cauchy’s integral formula, Taylor
series, Laurent series, Residue theorem, Solution integrals.

Probability and Statistics: Sampling theorems, Conditional probability, Mean, Median, Mode,
Standard Deviation, Random variables, Discrete and Continuous distributions, Poisson distribution,
Normal distribution, Binomial distribution, Correlation analysis, Regression analysis.

Numerical Methods: Solutions of nonlinear algebraic equations, Single and Multi‐step methods for
differential equations.

Transform Theory: Fourier Transform, Laplace Transform, z‐Transform.

INSTRUMENTATION ENGINEERING - IN
Linear Algebra: Matrix algebra, systems of linear equations, Eigen values and Eigen vectors.

Calculus: Mean value theorems, theorems of integral calculus, partial derivatives, maxima and
minima, multiple integrals, Fourier series, vector identities, line, surface and volume integrals, Stokes,
Gauss and Green’s theorems.

Differential equations: First order equation (linear and nonlinear), higher order linear differential
equations with constant coefficients, method of variation of parameters, Cauchy’s and Euler’s
equations, initial and boundary value problems, solution of partial differential equations: variable
separable method.

Analysis of complex variables: Analytic functions, Cauchy’s integral theorem and integral formula,
Taylor’s and Laurent’s series, residue theorem, solution of integrals.

Probability and Statistics: Sampling theorems, conditional probability, mean, median, mode and
standard deviation, random variables, discrete and continuous distributions: normal, Poisson and
binomial distributions.

Numerical Methods: Matrix inversion, solutions of non-linear algebraic equations, iterative methods
for solving differential equations, numerical integration, regression and correlation analysis.


1. PETROLEUM ENGINEERING – PE
2. CHEMICAL ENGINEERING - CH
Linear Algebra: Matrix algebra, Systems of linear equations, Eigen values and eigenvectors.

Calculus: Functions of single variable, Limit, continuity and differentiability, Taylor series, Mean value
theorems, Evaluation of definite and improper integrals, Partial derivatives, Total derivative, Maxima
and minima, Gradient, Divergence and Curl, Vector identities, Directional derivatives, Line, Surface
and Volume integrals, Stokes, Gauss and Green’s theorems.

Differential equations: First order equations (linear and nonlinear), Higher order linear differential
equations with constant coefficients, Cauchy’s and Euler’s equations, Initial and boundary value
problems, Laplace transforms, Solutions of one dimensional heat and wave equations and Laplace
equation.

Complex variables: Complex number, polar form of complex number, triangle inequality.

Probability and Statistics: Definitions of probability and sampling theorems, Conditional probability,
Mean, median, mode and standard deviation, Random variables, Poisson, Normal and Binomial
distributions, Linear regression analysis.

Numerical Methods: Numerical solutions of linear and non-linear algebraic equations. Integration by
trapezoidal and Simpson’s rule. Single and multi-step methods for numerical solution of differential
equations.

1. AGRICULTURE ENGINEERING – AG
2. BIOTECHNOLOGY – BT
3. MINING ENGINEERING - MN
Linear Algebra: Matrices and determinants, systems of linear equations, Eigen values and eigen
vectors.

Calculus: Limit, continuity and differentiability; partial derivatives; maxima and minima; sequences
and series; tests for convergence; Fourier series, Taylor series.

Vector Calculus: Gradient; divergence and curl; line; surface and volume integrals; Stokes, Gauss
and Green’s theorems. (Except for BT paper)

Differential Equations: Linear and non-linear first order Ordinary Differential Equations (ODE);
Higher order linear ODEs with constant coefficients; Cauchy’s and Euler’s equations; Laplace
transforms; Partial Differential Equations - Laplace, heat and wave equations.

Probability and Statistics: Mean, median, mode and standard deviation; random variables; Poisson,
normal and binomial distributions; correlation and regression analysis; tests of significance, analysis of
variance (ANOVA).

Numerical Methods: Solutions of linear and non-linear algebraic equations; numerical integration -
trapezoidal and Simpson’s rule; numerical solutions of ODE.

AEROSPACE ENGINEERING - AE
Linear Algebra: Vector algebra, Matrix algebra, systems of linear equations, rank of a matrix,
eigenvalues and eigenvectors.

Calculus: Functions of single variable, limits, continuity and differentiability, mean value theorem,
chain rule, partial derivatives, maxima and minima, gradient, divergence and curl, directional
derivatives. Integration, Line, surface and volume integrals. Theorems of Stokes, Gauss and Green.

Differential Equations: First order linear and nonlinear differential equations, higher order linear
ODEs with constant coefficients. Partial differential equations and separation of variables methods.

LINEAR
ALGEBRA

Manikantta Reddy ([email protected])

Manikantta Reddy ([email protected])

Manikantta Reddy ([email protected])

Manikantta Reddy ([email protected])

Manikantta Reddy ([email protected])

Manikantta Reddy ([email protected])

Manikantta Reddy ([email protected])

Manikantta Reddy ([email protected])

Manikantta Reddy ([email protected])

Manikantta Reddy ([email protected])

Manikantta Reddy ([email protected])

Manikantta Reddy ([email protected])

Manikantta Reddy ([email protected])

Manikantta Reddy ([email protected])

Manikantta Reddy ([email protected])

Manikantta Reddy ([email protected])

Manikantta Reddy ([email protected])

Manikantta Reddy ([email protected])

Manikantta Reddy ([email protected])

Manikantta Reddy ([email protected])

Manikantta Reddy ([email protected])

Manikantta Reddy ([email protected])

Manikantta Reddy ([email protected])

Manikantta Reddy ([email protected])

Manikantta Reddy ([email protected])

Manikantta Reddy ([email protected])

Manikantta Reddy ([email protected])

Manikantta Reddy ([email protected])

CALCULUS

VECTOR
CALCULUS

© Manikantta Reddy (9666678922)

© Manikantta Reddy (9666678922)

© Manikantta Reddy (9666678922)

© Manikantta Reddy (9666678922)

© Manikantta Reddy (9666678922)

© Manikantta Reddy (9666678922)

© Manikantta Reddy (9666678922)

© Manikantta Reddy (9666678922)

© Manikantta Reddy (9666678922)

© Manikantta Reddy (9666678922)

© Manikantta Reddy (9666678922)

© Manikantta Reddy (9666678922)

© Manikantta Reddy (9666678922)

© Manikantta Reddy (9666678922)

© Manikantta Reddy (9666678922)

© Manikantta Reddy (9666678922)

© Manikantta Reddy (9666678922)

© Manikantta Reddy (9666678922)

© Manikantta Reddy (9666678922)

© Manikantta Reddy (9666678922)

DIFFERENTIAL
EQUATIONS

©Manikantta Reddy ([email protected])

©Manikantta Reddy ([email protected])

©Manikantta Reddy ([email protected])

©Manikantta Reddy ([email protected])

©Manikantta Reddy ([email protected])

©Manikantta Reddy ([email protected])

©Manikantta Reddy ([email protected])

©Manikantta Reddy ([email protected])

©Manikantta Reddy ([email protected])

©Manikantta Reddy ([email protected])

©Manikantta Reddy ([email protected])

©Manikantta Reddy ([email protected])

©Manikantta Reddy ([email protected])

©Manikantta Reddy ([email protected])

©Manikantta Reddy ([email protected])

©Manikantta Reddy ([email protected])

©Manikantta Reddy ([email protected])

©Manikantta Reddy ([email protected])

©Manikantta Reddy ([email protected])

©Manikantta Reddy ([email protected])

©Manikantta Reddy ([email protected])

©Manikantta Reddy ([email protected])

©Manikantta Reddy ([email protected])

©Manikantta Reddy ([email protected])

©Manikantta Reddy ([email protected])

©Manikantta Reddy ([email protected])

©Manikantta Reddy ([email protected])

©Manikantta Reddy ([email protected])

©Manikantta Reddy ([email protected])

©Manikantta Reddy ([email protected])

©Manikantta Reddy ([email protected])

©Manikantta Reddy ([email protected])

©Manikantta Reddy ([email protected])

©Manikantta Reddy ([email protected])

©Manikantta Reddy ([email protected])

©Manikantta Reddy ([email protected])

©Manikantta Reddy ([email protected])

©Manikantta Reddy ([email protected])

©Manikantta Reddy ([email protected])

©Manikantta Reddy ([email protected])

©Manikantta Reddy ([email protected])

©Manikantta Reddy ([email protected])

©Manikantta Reddy ([email protected])

©Manikantta Reddy ([email protected])

©Manikantta Reddy ([email protected])

©Manikantta Reddy ([email protected])

©Manikantta Reddy ([email protected])

©Manikantta Reddy ([email protected])

©Manikantta Reddy ([email protected])

©Manikantta Reddy ([email protected])

©Manikantta Reddy ([email protected])

©Manikantta Reddy ([email protected])

COMPLEX
VARIABLES

© Manikantta Reddy (9666678922)

© Manikantta Reddy (9666678922)

© Manikantta Reddy (9666678922)

© Manikantta Reddy (9666678922)

© Manikantta Reddy (9666678922)

© Manikantta Reddy (9666678922)

© Manikantta Reddy (9666678922)

© Manikantta Reddy (9666678922)

© Manikantta Reddy (9666678922)

© Manikantta Reddy (9666678922)

© Manikantta Reddy (9666678922)

© Manikantta Reddy (9666678922)

© Manikantta Reddy (9666678922)

© Manikantta Reddy (9666678922)

© Manikantta Reddy (9666678922)

© Manikantta Reddy (9666678922)

© Manikantta Reddy (9666678922)

© Manikantta Reddy (9666678922)

© Manikantta Reddy (9666678922)

© Manikantta Reddy (9666678922)

© Manikantta Reddy (9666678922)

© Manikantta Reddy (9666678922)

© Manikantta Reddy (9666678922)

PROBABILITY
AND
STATISTICS

NUMERICAL
METHODS

Manikantta Reddy ([email protected])

Manikantta Reddy ([email protected])

Manikantta Reddy ([email protected])

Manikantta Reddy ([email protected])

Manikantta Reddy ([email protected])

Manikantta Reddy ([email protected])

Manikantta Reddy ([email protected])

Manikantta Reddy ([email protected])

Manikantta Reddy ([email protected])

Manikantta Reddy ([email protected])

Manikantta Reddy ([email protected])

Manikantta Reddy ([email protected])

Manikantta Reddy ([email protected])

Manikantta Reddy ([email protected])

Manikantta Reddy ([email protected])

Manikantta Reddy ([email protected])