Не GPT єдиним: можливості AI в бізнес-аналізі | Вебінар з Тетяною Перловською

E5Trainings 330 views 23 slides Aug 29, 2025
Slide 1
Slide 1 of 23
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23

About This Presentation

Штучний інтелект вже давно вийшов за межі простого генератора текстів. Його можливості активно проникають у сферу бізнес-аналізу – не як тренд, а як інструмент, що ...


Slide Content

NOT ONLY GPT: AI CAPABILITIES IN
BUSINESS ANALYSIS

AGENDA
Why AI is a BA Game-Changer
Live demo
AI BA SDLC
What Machines Do vs. What Humans Do
2

ABOUT ME:
Tetiana Perlovska
Senior Business Analysis Manager
EngX AI Productivity Expert
17+ years in BA, 7+ years in Management
Proud owner of a maltipoo

WHY AI IS
A BA GAME-CHANGER

WHAT CONSUMES MOST OF YOUR TIME AS A BA?
5

AI ISN’T MAGIC—IT’S A
FORCE MULTIPLIER THAT
CUTS BUSYWORK BY 50%,
LETTING YOU FOCUS ON
STRATEGY

THREE PILLARS OF BA+AI
Automation of Routine Work
AI automates documentation and note-taking, allowing business analysts to
focus on strategic and high-value tasks.
Data Analysis
AI supports risk identification and recognizes historical patterns, enabling
informed decision-making through advanced data analysis.
Communication Enhancement
AI-powered visualization tools and structured information improve
collaboration and make communication more impactful and clear.
7

TURNING CHAOS
INTO CLARITY

Tool: Otter.ai, Chat GPT
Promt:
“Role: Senior Business Analyst
Task: Convert this stakeholder voice note into:
1. Clear problem statements
2. Functional requirements (numbered)
3. Implied needs
4. Data sources needed
Voice Note: [Insert above transcript] ”
Output:
**Problem Statement:**
Prevent overselling by automating low-inventory detection and alerts.
**Functional Requirements:**
1. **Real-time inventory tracking:** Monitor stock levels per SKU.
2. **Threshold-based alerts:** Notify managers when inventory < [X] units (configurable).
3. **Overselling block:** Restrict orders if stock ≤ 0.
4. **Dashboard visualization:**
- Live inventory heatmap (red = critical)
- Overselling incident history
**Implied Needs:**
- Customizable alert rules (email/SMS)
- Integration with sales channels (e-commerce, POS)
- Historical trend analysis ("Last quarter" suggests forecasting)
**Data Sources Needed:**
- Current inventory DB
- Sales transaction logs
- SKU master list
1.AI-Powered Note Structuring

10
Output:
graph TD
A[New Order] --> B{Inventory Check}
B -->|Stock ≥ Order Qty| C[Process Payment]
B -->|Stock < Threshold| D[Trigger Manager Alert]
B -->|Stock = 0| E[Block Order & Notify Customer]
D --> F[Update Dashboard Alert Log]
C & E --> G[Update Inventory]
G --> H[Dashboard: Real-time Stock Levels]
2. Requirement → Visual Workflow
Tool: ChatGPT, Mermaid
Promt:
“Generate a diagram code (Mermaid.js) for:
1. Inventory check on order placement
2. Alert if stock < threshold
3. Block sale if stock = 0
4. Update dashboard ”

Output:
1. **As a** Warehouse Manager,
**I want** SMS/email alerts when inventory drops below 10 units per SKU,
**so that** I can replenish stock before shortages occur.
*Acceptance Criteria:*
- [ ] Alerts trigger within 30 seconds of threshold breach
- [ ] Configurable thresholds per SKU category
2. **As a** Sales Agent,
**I want** orders blocked automatically when stock = 0,
**so that** customers aren't sold unavailable items.
*Acceptance Criteria:*
- [ ] System shows "Out of Stock" message at checkout
- [ ] Backorder option offered if enabled
3. **As a** Operations Head,
**I want** a dashboard showing live inventory levels and shortage alerts,
**so that** I can prioritize resupply efforts.
*Acceptance Criteria:*
- [ ] Dashboard loads in < 2 seconds
- [ ] Color-coded risk zones (green/yellow/red)
3. Generate User Stories
Tool: ChatGPT
Prompt:
“Convert requirements into Agile user stories (INVEST
principle). Include acceptance criteria.
Key requirements:
- Low-stock alerts
- Overselling prevention
- Dashboard with real-time data”

AI BA SDLC

13
SDLC Phase BA Activities GenAI Tools GenAI-Assisted Deliverables
1. Initiation / Discovery
Stakeholder analysis
Problem/opportunity definition
Business case creation
Elicitation planning
Risk analysis
Feasibility assessment
Use AI chatbots to simulate stakeholder interviews
ChatGPT, Claude, Notion AI, Microsoft
Copilot, Whimsical AI
Stakeholder maps & personas
Draft problem statements
Business case outlines
Risk registers
AI-generated SWOT/PESTLE Stakeholder
Q&A simulations
2. Requirements Elicitation
Interview/survey prep
Workshop planning
Eliciting business rules
Brainstorming sessions
Gathering use cases/user stories
Auto-transcribe & summarize sessions
ChatGPT, Fireflies.ai, Otter.ai, Dovetail, Scribe
AI, Miro AI
Elicitation guides
Meeting minutes and follow ups
First-draft user stories
Business rule catalogs
Workshop agendas & activity plans
3. Requirements Analysis
Categorizing & grouping requirements
Gap & impact analysis
Conflict resolution
Prioritization (MoSCoW, Kano, Value-Risk)
Traceability planning
Use GenAI to generate visual models and decision
logs
ChatGPT, LucidchartAI, Miro AI, NotionAI,
Claude
Requirements matrix
Gap/impact analysis tables
Conflict resolution logs
Traceability matrix drafts
Decision logs
Auto-generated process & data diagrams
4. Requirements Specification
- BRD/SRS writing- User story/scenario writing
(INVEST, BDD)- Defining glossary, assumptions,
constraints- Requirements validation with SMEs
Leverage AI to generate reusable templates
ChatGPT, Confluence AI, Word Copilot,
Grammarly, Notion AI
- BRD/SRS first drafts- User stories and
Gherkin syntax- Reusable specification
templates- Glossary/term lists- Validation
checklists

14
SDLC Phase BA Activities GenAI Tools GenAI-Assisted Deliverables
5. Solution Design Support
Map requirements to design- Participate in
walkthroughs- Clarify business needs to
designers/developers- Review mockups/wireframes-
Define NFRs
Use AI to annotate wireframes and visualize
requirement mappings
ChatGPT, Figma AI, Miro AI, Mermaid Live
Editor
Requirement Design traceability-
Annotated UI/UX mockups- Draft NFRs
(performance, usability, etc.)- Visual flows
(Mermaid, UML)
6. Solution Evaluation & Testing
UAT support- Test case derivation- Defect triage-
Requirement validation- Regression impact analysis
Automate test mapping and generate test data
ChatGPT, TestRail AI Assist, Excel Copilot, Jira
Assist
UAT scripts- AI-generated test scenarios-
Requirement-test coverage reports-
Regression risk reports- AI-suggested test
data
7. Deployment & Support
Prepare transition documentation- Training &
onboarding- Release comms- Feedback collection-
Operational readiness check
Record training sessions and auto-generate help
content
ChatGPT, LoomAI, Otter.ai, SurveyMonkey
AI, NotionAI
Handover documentation- Training guides,
video scripts- AI-generated FAQs- Post-
deployment survey summaries- Knowledge
base articles
8. Continuous Improvement
Monitor KPIs- Analyze user feedback/behavior-
Groom backlog- Suggest enhancements- Lessons
learned capture
Use AI to auto-analyze feedback and recommend
next actions
Enable semantic search across project
documentation
ChatGPT, Power BI Copilot, Tableau GPT, Jira
Assist, Confluence AI, Notion AI
KPI dashboards with GenAI insights-
Groomed & rephrased backlog items-
Enhancement proposals- Semantic search
over project assets- Lessons learned
summaries- Auto-prioritized improvement
areas

BRING YOUR CASE

WHAT MACHINES DO
VS.
WHAT HUMANS DO

TASK AI BA
Data Gathering Automated collection Validation (relevance/accuracy)
Structuring Pattern recognition
Key term definition (business
glossary)
Visualization
Auto-generate
charts/diagrams
Stakeholder alignment (context
tuning)
Risk Identification Data-driven predictions
Contexte interprétation
(culture/politiques)
Solution Design Not applicable
Strategy + Negotiation (trade-
offs)
Responsibility Matrix

AI READS WORDS. THE ANALYST
READS BETWEEN THE LINES
18

IMPLEMENTATION: STRATEGY FOR YOUR TEAM
19
1. Feed AI Precisely
Bad: "Describe the system" → Vague, generic output
Good: "Write user stories for POS checkout: 'As a cashier, I
want to scan items faster with barcode batch processing...’”
Add constraints to prompts:
"Within PCI compliance standards," "Must support offline mode,"
"Max 3-second response time."
2. Start with Documentation
Use AI to auto-generate reports from raw data (Jira logs, user
interviews, telemetry):
"Analyze Sprint 23 bug data: Show top 3 modules by defect
density and suggest test coverage improvements."
Result: Free up 70%+ time for high-value analysis (e.g., root-
cause investigation of recurring issues).
3. Quality Control Guardrails
Adopt a Checklist:
Does this align with business goals?
Are acceptance criteria testable?
Is domain jargon consistent?
Schedule Pre-Meeting reviews: Dedicate 15 minutes to sanitize
AI outputs before sharing.
3 Pro Tips for start:

PITFALLS TO AVOID
20
Risk Consequence Mitigation Strategy
Over-reliance on AI"Floaty artifacts" (no substance)
Ground outputs: Always add "How does this
impact [KPI]?" to prompts.
Ignoring context Missed stakeholder emotions
Inject context: "Stakeholder is frustrated with
manual workarounds because..."
Skipping testing Hallucinated logic in production
Pilot first: Validate outputs on a low-risk "lab
project" (e.g., internal tool).

ТУТНЕМАЄ‘ЧАРІВНОЇКНОПКИ’ —
ЄСИСТЕМАСТВОРЕННЯСВОГОAI-
ПОМІЧНИКА, КОТРИЙПРАЦЮЄЯК
ВАШАДРУГАПАРАРУК
21

THANK YOU
22

ОНЛАЙНКУРС
2
3
Інтегровані AI-інструменти в повсякденні
робочі процеси
1
Швидкий й ефективний автоматизований
збір, аналіз і управління вимогами
Аналіз ринку, конкурентів та побудова
ефективних бізнес-кейсів за допомогою АІ
Унікальна знижка
10%за промокодом:
webE5
AI for Business Analysis
з 07.10.2025 до 28.10.2025
Діятиме до 05.09
Щовиотримаєтезавдякинавчанню: