Group-2-Measure-of-Kurtosis-1.pptx

1,256 views 20 slides Mar 09, 2023
Slide 1
Slide 1 of 20
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20

About This Presentation

check


Slide Content

Measure of Kurtosis Presented by: Group 2

Objectives: Discuss what Kurtosis is. Compute the Kurtosis for both the grouped and ungrouped data. Be able to describe the Kurtosis measurement.

1 st type Leptokurtic Kurtosis - refers to the degree to which a distribution is peaked or flat. 3 types of Kurtosis 2 nd type 3 rd type Mesokurtic Platykurtic It has less kurtosis than the normal distribution . The kurtosis of this distribution is comparable to that of the normal distribution. It has more kurtosis than the normal distribution. K < 3 K = 3 K > 3

3 types of Kurtosis

Formulas used in Ungrouped data of Kurtosis

  Where: Xi = Individual Values = Mean n = Number of Observations s = Standard Deviation   Mean: For Ungrouped Data:     Standard Deviation:

Solve this!

U ngrouped Kurtosis Xi 6 7 9 11 13 15 16 Σ = 77        

U ngrouped Kurtosis - ( - 6 6 - 11 - 5 25 625 7 7 - 11 - 4 16 256 9 9 - 11 - 2 4 16 11 11 - 11 13 13 - 11 2 4 16 15 15 - 11 4 16 256 16 16 - 11 5 25 625 6 6 - 11 - 5 25 625 7 7 - 11 - 4 16 256 9 9 - 11 - 2 4 16 11 11 - 11 13 13 - 11 2 4 16 15 15 - 11 4 16 256 16 16 - 11 5 25 625 S   S   S   S   S   v v

U ngrouped Kurtosis - ( - 6 6 - 11 - 5 25 625 7 7 - 11 - 4 16 256 9 9 - 11 - 2 4 16 11 11 - 11 13 13 - 11 2 4 16 15 15 - 11 4 16 256 16 16 - 11 5 25 625 6 6 - 11 - 5 25 625 7 7 - 11 - 4 16 256 9 9 - 11 - 2 4 16 11 11 - 11 13 13 - 11 2 4 16 15 15 - 11 4 16 256 16 16 - 11 5 25 625 S   S   S   S   S  

U ngrouped Kurtosis - ( - 6 6 - 11 - 5 25 625 7 7 - 11 - 4 16 256 9 9 - 11 - 2 4 16 11 11 - 11 13 13 - 11 2 4 16 15 15 - 11 4 16 256 16 16 - 11 5 25 625 6 6 - 11 - 5 25 625 7 7 - 11 - 4 16 256 9 9 - 11 - 2 4 16 11 11 - 11 13 13 - 11 2 4 16 15 15 - 11 4 16 256 16 16 - 11 5 25 625           Since K-computed 1.14 is < 3, therefore the distribution is Platykurtic .

Formulas used in Grouped data of Kurtosis

For Grouped Data: Mean : Standard Deviation:       Where: Xi = Class Mark = Mean n = Number of Observations s = Standard Deviation  

Grouped Kurtosis C.I Frequency Xi FiXi 76 - 79 2 77.5 155 80 – 83 5 81.5 407.5 84 - 87 5 85.5 427.5 88 - 91 11 89.5 984.5 92 - 95 4 93.5 374 96 - 99 3 97.5 292.5 n = 30 Σ = 2,641 |Xi – X| 10.53 6.53 2.53 1.47 5.47 9.47       vv

Grouped Kurtosis C.I Frequency Xi FiXi 76 - 79 2 77.5 155 80 – 83 5 81.5 407.5 84 - 87 5 85.5 427.5 88 - 91 11 89.5 984.5 92 - 95 4 93.5 374 96 - 99 3 97.5 292.5 n = 30 Σ = 2,641 |Xi – X| 10.53 6.53 2.53 1.47 5.47 9.47      

C.I Frequency Xi FiXi |Xi – X| Fi |Xi – X| Fi |Xi - X |² Fi|Xi - X|⁴ 76 - 79 2 77.5 155 10.53 21.06 221.7618 24,589.1480 80 – 83 5 81.5 407.5 6.53 32.65 213.2045 9,091.2318 84 - 87 5 85.5 427.5 2.53 12.65 32.0045 204.8576 88 - 91 11 89.5 984.5 1.47 16.17 23.7699 51.3644 92 - 95 4 93.5 374 5.47 21.88 119.6836 3,581.041 96 - 99 3 97.5 292.5 9.47 28.41 269.0427 24,127.9915 n = 30 Σ = 2,641 Σ = 132.82 Σ = 879.467 Σ = 61,645.6343 Grouped Kurtosis v v vv

Grouped Kurtosis C.I Frequency Xi FiXi |Xi – X| Fi |Xi – X| Fi |Xi - X |² Fi|Xi - X|⁴ 76 - 79 2 77.5 155 10.53 21.06 221.7618 24,589.1480 80 – 83 5 81.5 407.5 6.53 32.65 213.2045 9,091.2318 84 - 87 5 85.5 427.5 2.53 12.65 32.0045 204.8576 88 - 91 11 89.5 984.5 1.47 16.17 23.7699 51.3644 92 - 95 4 93.5 374 5.47 21.88 119.6836 3,581.041 96 - 99 3 97.5 292.5 9.47 28.41 269.0427 24,127.9915 n = 30 Σ = 2,641 Σ = 132.82 Σ = 879.467 Σ = 61,645.6343

Grouped Kurtosis          

Grouped Kurtosis           Since K-computed 2.23 is < 3, therefore the distribution is Platykurtic .

Thank you! Presented by: Group 2
Tags