group1ppt-240508064514-51fa79311221.pptx

AmolAher20 11 views 16 slides Mar 10, 2025
Slide 1
Slide 1 of 16
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16

About This Presentation

Q1.Take the photo of increasing and decreasing curves separately


Slide Content

CIA SELF LEARNING ACTIVITY SUB-MATHEMATICS- II SWAMI GROUP NO - 6 DURING THE ACADEMIC YEAR 2023-24

Q1.Take the photo of increasing and decreasing curves separately. Verify whether Roll's theorem is applicable or not, if applicable take approximate value and find C

f ( x ) = π‘₯ 2 + 2 x βˆ’ 8 ; x πœ– [ - 4,2] lets check conditions of rolls theorem condition 1 and 2- f(x)= π‘₯ 2 +2x-8 is a polynomial so f(x)is continuous on [-4,2] and differentiable in(-4,2) C ondition 3- f(a)=f(b) for a=-4,b=2 f(-4)= (βˆ’4) 2 +2 βˆ’4 βˆ’ 8 =16-8-8 =0 f(2)= (2) 2 +2 2 βˆ’ 8 =4+4-8 =0

Hence, f(-4) = f(2) Now f(x) = π‘₯ 2 + 2x – 8 f ' (x) = 2x + 2 – 0 f ' (x) = 2x +2 put x=c f ' (c) = 2c +2 Since all three conditions are satisfied f ' (c) = o 2c + 2 = 2c = -2 c = -2/2 c=-1 hence the rolls theorem is verified .

Q2. Solve 𝑑𝑦 = 𝑋 + 𝑋 2 π‘Œ 2 , 𝑑𝑧 = 𝑋𝑍, π‘Œ 1 = 3 , 𝑍 1 = 4, β„Ž = 0.3 𝑑π‘₯ 𝑑π‘₯ Find 𝑦, 𝑧 at π‘₯ = 1.3 π‘Œ = 3, 𝑋 = 1, 𝑍 = 4, β„Ž = 0.3 Here, 𝑑𝑦 = 𝑓 π‘₯, 𝑦, 𝑧 = π‘₯ + π‘₯ 2 𝑦 2 & 𝑑𝑧 = πœ‘ π‘₯, 𝑦, 𝑧 = π‘₯𝑧 𝑑π‘₯ 𝑑π‘₯ Starting at ( π‘₯ , 𝑦 , 𝑧 ) and taking the step-sizes for π‘₯, 𝑦, 𝑧 to be β„Ž, π‘˜, 𝑙 respectively, the Runge-Kutta method gives π‘˜ 1 = β„Ž 𝑓 ( π‘₯ , 𝑦 , 𝑧 ) 0 0 = β„Ž (π‘₯ + π‘₯ 2 𝑦 2 ) = 0.3 (1 + 1 2 3 2 ) = . 3 10 𝑙 1 = β„Ž πœ‘ ( π‘₯ , 𝑦 , 𝑧 ) = β„Ž ( π‘₯ 𝑧 ) = 0.3(1 Γ— 4) = 1.2 π‘˜ 1 = 3

π‘˜ 2 2 0 0 = β„Žπ‘“ π‘₯ + β„Ž , 𝑦 + π‘˜ 1 2 , 𝑧 + 𝑙 1 2 β„Ž π‘˜ 1 𝑙 2 = β„Ž πœ‘ ( π‘₯ + 2 , 𝑦 + 2 , 𝑧 2 + 𝑙1 ) = β„Žπ‘“ ( 1 + . 3 , 3 + 2 2 1 . 2 2 3 , 4 + ) 3 2 2 = . 3πœ‘ ( 1 + . 3 , 3 + , 4 + 2 1.2 ) = β„Žπ‘“ ( 1 . 1 5 , 4 . 5 , 4 . 6 ) = . 3 πœ‘ ( 1 . 1 5 , 4 . 5 , 4 . 6 ) = 0.3 ( 1.15 + 1.15 2 4.5 2 ) = . 3 ( 1 . 1 5 Γ— 4 . 6 ) = . 3 ( 1 . 1 5 + 1 . 322 5 Γ— 2 . 2 5 ) = 0.3 (5.29) = 0.3 (27.9306) = 1.587 = 8.3792

π‘˜ 3 2 0 0 = β„Žπ‘“ π‘₯ + β„Ž , 𝑦 + π‘˜ 1 2 , 𝑧 + 𝑙 2 2 3 β„Ž 0 0 𝑙 = β„Ž πœ‘ ( π‘₯ + , 𝑦 + π‘˜ 2 2 2 2 , 𝑧 + 𝑙 2 ) = . 3 𝑓 ( 1 . 1 5 , 3 + 2 8 .37 9 2 , 4 + 2 1.587 ) = . 3 πœ‘ ( 1 . 1 5 , 7 . 1 8 9 6 , 4 . 7 93 5 ) = . 3 𝑓 ( 1 . 1 5 , 1 4 . 379 2 , 2 2 9.857 ) = 0.3 (1.15 Γ— 4.7935) = . 3 𝑓 ( 1 . 1 5 , 7 . 1 8 9 6 , 4 . 7 93 5 ) = 0.3 (5.5125) = 0.3 (1.15 + (1.15) 2 (7.1896) 2 ) = 1.65385 = 0.3 (69.5104) = 20.85312

𝑙 4 = β„Žπœ‘(π‘₯ + β„Ž, 𝑦 + π‘˜ 3 , 𝑧 + 𝑙 3 ) π‘˜ 4 = β„Žπ‘“ π‘₯ + β„Ž, 𝑦 + π‘˜ 3 , 𝑧 + 𝑙 3 = . 3 𝑓 ( 1 + . 3 , 3 + 20 . 8 53 1 2 , 4 + 1 . 6 53 8 ) = 0.3πœ‘ (1.3,23.85312,5.6538) = . 3 𝑓 ( 1 . 3 , 2 3 . 8 5 31 2 , 5 . 65 3 8 ) = . 3 ( 1 . 3 Γ— 5 . 65 3 8 ) = 0.3 (1.3 + (1.3) 2 (23.85312) 2 ) = 2.2050 = 0.3 (962.8614) = 288.85842

1 𝑙 = (𝑙 1 + 2𝑙 2 + 2𝑙 3 + 𝑙 4 ) 6 1 = ( 3 + 2 8.3792 + 2 20.85312 + 288.8584) 1 6 = ( 1.2 + 2 1.537 6 2 1.6538 + 2.2050) 1 = (3 + 41.70624 + 16.7584 + 288.8584) = 1 6 (1.2 + 3.174 + 6 3.3076 + 2.2050) 1 6 = (350.32306) = 1 6 (9.8866) = 58.3871 = 1.6477 𝑦 = 𝑦 + π‘˜ = 3 + 58.3571 = 5.6477 𝑧 = 𝑧 + 𝑙 = 4 + 1.6477 = 61.38 K = 1 (K 1 + 2K 2 + 2K 3 + K 4 ) 6 + 2 (1.65385 )+ 2.2050 ) 3.3077 + 2.2050 )

Q.3. Determine Area lies under the C shape curve, take photo of such curve you have seen inΒ collegeΒ campus.

eq-1 e q - 2 Parabola : 𝑦 2 = 4π‘₯ Line : 𝑦 = 2π‘₯ βˆ’ 4 Put the equation 1 in equation 2 ∴ (2π‘₯ βˆ’ 4) 2 = 4π‘₯ ∴ 4π‘₯ 2 βˆ’ 16π‘₯ + 16 = 4π‘₯ ∴ 4π‘₯ 2 βˆ’ 20π‘₯ + 16 = ∴ π‘₯ 2 βˆ’5π‘₯ + 4 = π‘₯ = 1,4 W h e n x = 1 a n d When x = 4 and y = -2 y = 4 Point of intersection are A(1,-2) and B(4,4) 2 Internal limit: π‘₯ = 𝑦 4 ; π‘₯ = (𝑦+4) 2 External limits : y = -2 ; y = 4

A = Β  Β 

𝐴 4 2 + 8 4 2 3 ) A 16 + 32 (( 2) 2 + 8 2 8 3 ( 4 1 6 + ) A 3 64 3 4 + 16 8 3 A A 16 + 32 60 24 36 A = 9 sq. units

Q . 4 . U s i n g t y l o r ’ s s e r i e s e x p r e s s ( 𝒙 βˆ’ πŸ“ ) πŸ‘ + 2 ( 𝒙 βˆ’ πŸ“ ) 𝟐 + 7 in p o w e r o f β€˜ x ’ . A n s : f ( x ) = 𝒙 βˆ’ πŸ“ πŸ‘ + 2 ( 𝒙 βˆ’ πŸ“ ) 𝟐 +7 f ( x ) = 𝒙 πŸ‘ + 𝟐 𝒙 𝟐 +7 h= -5 f(x+h)= f(h)+ x f’(h)+ 𝒙 𝟐 / 2!.f”(h)+ 𝒙 πŸ‘ /3!+f”(h) f ( - 5 ) = ( βˆ’ πŸ“ ) πŸ‘ +2 X ( βˆ’ πŸ“ ) 𝟐 +7 = (-125)+50+7 .: f(-5)= -68 F ` ( h ) = πŸ‘ 𝒙 𝟐 +4x F` (-5)=3 (βˆ’πŸ“) 𝟐 +4(-5) =55

F`` (h)=6x+4 f`` (-5)=6(-5)+4 = -30+4 .: f ’” (h)= -26 f’”(h)= 6 f’”(-5)= 6 f(x+h)= -68+x(55)+ 𝒙 𝟐 /2.(-26)+ 𝒙 πŸ‘ /6 x(6) = -68+55x-13 𝒙 𝟐 + 𝒙 πŸ‘ = 𝒙 πŸ‘ - 13 𝒙 𝟐 +55 x - 68 .: f( x+h )= 𝒙 πŸ‘ -13x^2+55x-68

THANK YOU!!!
Tags