H.Seo, ICLR 2024, MLILAB, KAIST AI.pdf

MLILAB 49 views 13 slides May 28, 2024
Slide 1
Slide 1 of 13
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13

About This Presentation

Trimming Edges with Degree-based Discrimination strategY


Slide Content

TEDDY
: Trimming Edges with Degree-based Discrimination strategY
Hyunjin Seo*, Jihun Yun*, Eunho Yang
1

Graph datasets and GNNs have progressively
become more INTRICATE
2
Notorious COMPUTATIONAL OVERHEAD
during training / inference

SOLUTION: Finding Graph LoBery Tickets (GLT) has become
one of the pivotal focus
3
Graph SparsificationParameter Sparsification

4
HOWEVER, previous studies have largely overlooked
the paramount importance of structural informaLon
•Magnitude-based pruning NOT fully exploit inherent pathways in the graph
•Identified lottery tickets in an iterativemanner (progressive pruning)
1) Chen et al., A Unified Lottery Ticket Hypothesis for Graph Neural Networks, ICML 2021

MoLvaLon: Low-degree Edge MaBers Spectrally
5
Eliminating low-degreeedges makes the graph spectrally unstable
•: Changes of normalized graph Laplacian energy when removing a single edge
from original edges
•Higher energy indicateslow graph stability
1

Mo#va#on: Low-degree Edge Ma1ers Empirically
6
Eliminatinglow-degreeedges significantly degrades node classification performance
•Edge sparsifica=on by (1) the highestedge degree and (2) the lowestedge degree
2

We introduce TEDDY,
a One-shotedge sparsification framework
incorporating Edge Degreeinformation
with projected gradient descent on ℓ!Ball
TEDDYsignificantly surpasses conventional
iterative approaches UP TO 20.4% in
node classification task, within a Single Training
7

Overview of TEDDY
8

Component 1 -Graph Sparsification
9
#2 Compute edge-wise scorevia outer-product
#1 Aggregatedegree information in a multi-level perspective
In practice, TEDDY requires O(N+M) space complexity,
as is only computed for the existingedges

Component 2 -Parameter Sparsification
#1 DisHllaHon from Dense GNNs
To improve the model generaliza<on,
match the logits learned from the en<re graph
#2 Projected Gradient Descent on ℓ!ball
Encourage the desired level of sparsity h
without iterative process
: h-sparse ℓ!ball
10

Results on Small-and Medium-scale Graphs
#1 TEDDY outperforms vanilla GNNs
in more than halfof the settings,
even though the main goal is the
preservationof the original accuracy
#2 Consistently achieves SOTA by a
huge margin (12.8-20.4% H–in GAT),
compared to the optimal baseline
performance
11

Results on Extreme Sparsity Regimes
Progressive improvementis observed with the increment in sparsity raIo (3.08% H–on Pubmed)
12
TEDDY still surpasses the original performance in 14 out of 15 settings

Summary
§We presented a novel edge sparsifica=on method
that considers the Graph StructuralInforma=on
§TEDDY successfully iden=fies GLT within a Single Training
§As future work, we plan to inves=gate how to incorporate the
node featureinforma=on into our framework
For more details,
please join our poster session!
Thank you
13
Contact InfoPaper Link
Tags