SlidePub
Home
Categories
Login
Register
Home
General
HADOOP AND MAPREDUCE ARCHITECTURE-Unit-5.ppt
HADOOP AND MAPREDUCE ARCHITECTURE-Unit-5.ppt
1,259 views
53 slides
Mar 11, 2024
Slide
1
of 53
Previous
Next
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
About This Presentation
fgfgf
Size:
1.7 MB
Language:
en
Added:
Mar 11, 2024
Slides:
53 pages
Slide Content
Slide 1
CSA15-CLOUDCOMPUTINGANDBIGDATAANALYTICS
Dr.J.Praveenchandar
AssociateProfessor/CSE
HADOOPANDMAPREDUCE
ARCHITECTURE
Dr.J.Praveenchandar/CSE
Slide 2
HADOOPANDMAPREDUCEARCHITECTURE
Dr.J.Praveenchandar/CSE
Bigdata–ApacheHadoop&HadoopEcoSystem–Analyzingdata
withHadoopstreaming–HDFSconcept–InterfacetoHDFS-
MovingDatainandoutofHadoop–IntroductiontoMapReduce–
MapReduceAlgorithmandArchitecture–Understandinginputs
andoutputsofMapReduce-AnatomyofMapReduceJobrun–
FailuresinclassicalMapReduceandYARN–Jobscheduling-Data
Serialization.
Slide 3
Big data
•BigDataisacollectionofdatathatishugeinvolume,yetgrowing
exponentiallywithtime.
•Itisadatawithsolargesizeandcomplexitythatnoneoftraditional
datamanagementtoolscanstoreitorprocessitefficiently.
•Bigdataisalsoadatabutwithhugesize.
ExampleofBigData
•NewYorkStockExchange SocialMedia
Dr.J.Praveenchandar/CSE
Slide 4
ApacheHadoop&HadoopEcosystem
•ApacheHadoopisanopensourceframework
intendedtomakeinteractionwithbigdataeasier,
•Hadoophasmadeitsplaceintheindustriesand
companiesthatneedtoworkonlargedatasets
whicharesensitiveandneedsefficienthandling.
•Hadoopisaframeworkthatenablesprocessingof
largedatasetswhichresideintheformofclusters.
•Beingaframework,Hadoopismadeupofseveral
modulesthataresupportedbyalargeecosystemof
technologies.
Dr.J.Praveenchandar/CSE
Slide 5
Amulti-node Hadoopcluster
Dr.J.Praveenchandar/CSE
Slide 6
ApacheHadoop&HadoopEcosystem
Dr.J.Praveenchandar/CSE
•HadoopEcosystemisaplatformorasuitewhichprovidesvarious
servicestosolvethebigdataproblems.
TherearefourmajorelementsofHadoopi.e.
•HDFS,
•MapReduce,
•YARN,and
•HadoopCommon.
Slide 7
Dr.J.Praveenchandar/CSE
Slide 8
ComponentsthatcollectivelyformaHadoopecosystem
Dr.J.Praveenchandar/CSE
•HDFS:HadoopDistributedFileSystem
•YARN:YetAnotherResourceNegotiator
•MapReduce:ProgrammingbasedDataProcessing
•Spark:In-Memorydataprocessing
•PIG,HIVE:Querybasedprocessingofdataservices
•HBase:NoSQLDatabase
•Mahout,SparkMLLib:MachineLearningalgorithmlibraries
•Solar,Lucene:SearchingandIndexing
•Zookeeper:Managingcluster
•Oozie:JobScheduling
Slide 9
HDFS:
Dr.J.Praveenchandar/CSE
•HDFSistheprimaryormajorcomponentofHadoopecosystemand
isresponsibleforstoringlargedatasetsofstructuredor
unstructureddataacrossvariousnodesandtherebymaintainingthe
metadataintheformoflogfiles.
•HDFSconsistsoftwocorecomponentsi.e.
Namenode
DataNode
Slide 10
YARN:
Dr.J.Praveenchandar/CSE
•YetAnotherResourceNegotiator,asthenameimplies,YARNisthe
onewhohelpstomanagetheresourcesacrosstheclusters.Inshort,
itperformsschedulingandresourceallocationfortheHadoop
System.
•Consistsofthreemajorcomponentsi.e.
ResourceManager
NodesManager
ApplicationManager
Slide 11
MapReduce:
Dr.J.Praveenchandar/CSE
•Bymakingtheuseofdistributedandparallelalgorithms,MapReduce
makesitpossibletocarryovertheprocessing’slogicandhelpsto
writeapplicationswhichtransformbigdatasetsintoamanageable
one.
•MapReducemakestheuseoftwofunctionsi.e.Map()andReduce()
whosetaskis:
Map()performssortingandfilteringofdataandtherebyorganizingthemin
theformofgroup.Mapgeneratesakey-valuepairbasedresultwhichislater
onprocessedbytheReduce()method.
Reduce(),asthenamesuggestsdoesthesummarizationbyaggregatingthe
mappeddata.Insimple,Reduce()takestheoutputgeneratedbyMap()as
inputandcombinesthosetuplesintosmallersetoftuples.
Slide 12
PIG:
Dr.J.Praveenchandar/CSE
•PigwasbasicallydevelopedbyYahoowhichworksonapigLatin
language,whichisQuerybasedlanguagesimilartoSQL.
•Itisaplatformforstructuringthedataflow,processingand
analyzinghugedatasets.
•Pigdoestheworkofexecutingcommandsandinthebackground,all
theactivitiesofMapReducearetakencareof.
•Aftertheprocessing,pigstorestheresultinHDFS.
Slide 13
HIVE:
Dr.J.Praveenchandar/CSE
•WiththehelpofSQLmethodologyandinterface,HIVEperforms
readingandwritingoflargedatasets.
•However, itsquerylanguageiscalledasHQL(HiveQueryLanguage).
•Itishighlyscalableasitallowsreal-timeprocessingandbatch
processingboth.
•Also,alltheSQLdatatypesaresupportedbyHivethus,makingthe
queryprocessingeasier.
•SimilartotheQueryProcessingframeworks,HIVEtoocomeswith
twocomponents:JDBCDriversandHIVECommandLine.
Slide 14
ApacheSpark:
Dr.J.Praveenchandar/CSE
•It’saplatformthathandlesalltheprocessconsumptivetaskslike
batchprocessing,interactiveoriterativereal-timeprocessing,graph
conversions,andvisualization,etc.
•Itconsumesinmemoryresourceshence,thusbeingfasterthanthe
priorintermsofoptimization.
•Sparkisbestsuitedforreal-timedatawhereasHadoopisbestsuited
forstructureddataorbatchprocessing,hencebothareusedinmost
ofthecompaniesinterchangeably.
Slide 15
Dr.J.Praveenchandar/CSE
Slide 16
HadoopStreaming
Dr.J.Praveenchandar/CSE
•ItisautilityorfeaturethatcomeswithaHadoopdistributionthat
allowsdevelopersorprogrammerstowritetheMap-Reduce
programusingdifferentprogramminglanguageslikeRuby,Perl,
Python,C++
•Ifwearereadinganimagedatathenwecangeneratekey-valuepair
foreachpixelwherethekeywillbethelocationofthepixelandthe
valuewillbeitscolorvaluefrom(0-255)foracoloredimage.
•Nowthislistofkey-valuepairsisfedtotheMapphaseandMapper
willworkoneachofthesekey-valuepairofeachpixelandgenerate
someintermediatekey-valuepairswhicharethenfedtothe
Reducerafterdoingshufflingandsortingthenthefinaloutput
producedbythereducerwillbewrittentotheHDFS.
Slide 17
HDFSconcept
Dr.J.Praveenchandar/CSE
•TheHadoopDistributedFileSystem(HDFS)istheprimarydata
storagesystemusedbyHadoopapplications.
•HDFSemploysaNameNodeandDataNodearchitectureto
implementadistributedfilesystemthatprovideshigh-performance
accesstodataacrosshighlyscalableHadoopclusters.
•HDFSenablestherapidtransferofdatabetweencomputenodes.
•Atitsoutset,itwascloselycoupledwithMapReduce,aframework
fordataprocessingthatfiltersanddividesupworkamongthenodes
inacluster,anditorganizesandcondensestheresultsintoa
cohesiveanswertoaquery.
Slide 18
Dr.J.Praveenchandar/CSE
Slide 19
HDFS
Dr.J.Praveenchandar/CSE
•HDFSusesaprimary/secondaryarchitecture.
•TheHDFScluster'sNameNodeistheprimaryserverthatmanages
thefilesystemnamespaceandcontrolsclientaccesstofiles.
•AsthecentralcomponentoftheHadoopDistributedFileSystem,the
NameNodemaintainsandmanagesthefilesystemnamespaceand
providesclientswiththerightaccesspermissions.
•Thesystem'sDataNodesmanagethestoragethat'sattachedtothe
nodestheyrun
Slide 20
HDFS
Dr.J.Praveenchandar/CSE
•HDFSexposesafilesystemnamespaceandenablesuserdatatobe
storedinfiles.
•Afileissplitintooneormoreoftheblocksthatarestoredinasetof
DataNodes.
•TheNameNodeperformsfilesystemnamespaceoperations,
includingopening,closingandrenamingfilesanddirectories.
•TheNameNodealsogovernsthemappingofblockstothe
DataNodes.
•TheDataNodesservereadandwriterequestsfromtheclientsofthe
filesystem.Inaddition,theyperformblockcreation,deletionand
replicationwhentheNameNodeinstructsthemtodoso.
Slide 21
HDFS
Dr.J.Praveenchandar/CSE
•HDFSsupportsatraditionalhierarchicalfileorganization.
•Anapplicationorusercancreatedirectoriesandthenstorefiles
insidethesedirectories.
•Thefilesystemnamespacehierarchyislikemostotherfilesystems--
ausercancreate,remove,renameormovefilesfromonedirectory
toanother.
Slide 22
FeaturesofHDFS
ThereareseveralfeaturesthatmakeHDFSparticularlyuseful,
including
Datareplication.Thisisusedtoensurethatthedataisalways
availableandpreventsdataloss.
Forexample,whenanodecrashesorthereisahardwarefailure,
replicateddatacanbepulledfromelsewherewithinacluster,so
processingcontinueswhiledataisrecovered.
Faulttoleranceandreliability.HDFS'abilitytoreplicatefileblocks
andstorethemacrossnodesinalargeclusterensuresfaulttolerance
andreliability.
Highavailability.Asmentionedearlier,becauseofreplicationacross
notes,dataisavailableeveniftheNameNodeoraDataNodefails.
Dr.J.Praveenchandar/CSE
Slide 23
FeaturesofHDFS
Dr.J.Praveenchandar/CSE
•Scalability.BecauseHDFSstoresdataonvariousnodesinthe
cluster,asrequirementsincrease,aclustercanscaletohundredsof
nodes.
•Highthroughput.BecauseHDFSstoresdatainadistributed
manner,thedatacanbeprocessedinparallelonaclusterofnodes.
This,plusdatalocality(seenextbullet),cuttheprocessingtimeand
enablehighthroughput.
•Datalocality.WithHDFS,computationhappensontheDataNodes
wherethedataresides,ratherthanhavingthedatamovetowhere
thecomputationalunitis.
Slide 24
BenefitsofusingHDFS
Dr.J.Praveenchandar/CSE
•Costeffectiveness.
•Largedatasetstorage.
•Fastrecoveryfromhardwarefailure.
•Portability.
•Streamingdataaccess.
Slide 25
HDFSusecasesandexamples
Dr.J.Praveenchandar/CSE
•TheHadoopDistributedFileSystememergedatYahooasapartof
thatcompany'sonlineadplacementandsearchengine
requirements.
•Likeotherweb-basedcompanies,Yahoojuggledavarietyof
applicationsthatwereaccessedbyanincreasingnumberofusers,
whowerecreatingmoreandmoredata.
•EBay,Facebook,LinkedInandTwitterareamongthecompanies
thatusedHDFStounderpinbigdataanalyticstoaddress
requirementssimilartoYahoo's.
Slide 26
MovingdataintoandoutofHadoop
Dr.J.Praveenchandar/CSE
•Datamovementisoneofthosethingsthatyouaren’tlikelytothink
toomuchaboutuntilyou’refullycommittedtousingHadoopona
project,atwhichpointitbecomesthisbigscaryunknownthathasto
betackled.
•Ingressandegressrefertodatamovementintoandoutofasystem,
respectively.
Keyelementsofdatamovement
•MovinglargequantitiesofdatainandoutofHadoopofferslogistical
challengesthatincludeconsistencyguaranteesandresourceimpacts
ondatasourcesanddestinations.
Slide 27
Dr.J.Praveenchandar/CSE
Slide 28
Keyelementsofdatamovement
Dr.J.Praveenchandar/CSE
•Idempotence:Anidempotentoperationproducesthesameresultno
matterhowmanytimesit’sexecuted.
•Aggregation:ItisperformedtoacquirethefinalresultoftheMapReduce
job,thatiscombiningtheoutputoftheMapperanddisplayingthe
result.
•Dataformattransformation
Thedataformattransformationprocessconvertsonedataformat
intoanother.
•Monitoring
ensuresthatfunctionsareperformingasexpectedinMonitoring
automated
systems.
•Dataformattransformation
Thedataformattransformationprocessconvertsonedataformatinto
another.
Slide 29
MapReduce
Dr.J.Praveenchandar/CSE
•MapReduceisaprogrammingmodelforwritingapplicationsthat
canprocessBigDatainparallelonmultiplenodes.
•MapReduceprovidesanalyticalcapabilitiesforanalyzinghuge
volumesofcomplexdata.
•TraditionalEnterpriseSystemsnormallyhaveacentralizedserverto
storeandprocessdata.
•Traditionalmodeliscertainlynotsuitabletoprocesshugevolumes
ofscalabledataandcannotbeaccommodatedbystandarddatabase
servers.
•Moreover,thecentralizedsystemcreatestoomuchofabottleneck
whileprocessingmultiplefilessimultaneously.
Slide 30
MapReduceWorks
Dr.J.Praveenchandar/CSE
•TheMapReducealgorithmcontainstwoimportanttasks,namely
MapandReduce.
•TheMaptasktakesasetofdataandconvertsitintoanothersetof
data,whereindividualelementsarebrokendownintotuples(key-
valuepairs).
•TheReducetasktakestheoutputfromtheMapasaninputand
combinesthosedatatuples(key-valuepairs)intoasmallersetof
tuples.
•Thereducetaskisalwaysperformedafterthemapjob.
Slide 31
MapReduce
Dr.J.Praveenchandar/CSE
Slide 32
MapReduce
Dr.J.Praveenchandar/CSE
•InputPhase−HerewehaveaRecordReaderthattranslateseach
recordinaninputfileandsendstheparseddatatothemapperin
theformofkey-valuepairs.
•Map−Mapisauser-definedfunction,whichtakesaseriesofkey-
valuepairsandprocesseseachoneofthemtogeneratezeroormore
key-valuepairs.
•IntermediateKeys−Theykey-valuepairsgeneratedbythemapper
areknownasintermediatekeys.
•Combiner−AcombinerisatypeoflocalReducerthatgroups
similardatafromthemapphaseintoidentifiablesets.
•ShuffleandSort−TheReducertaskstartswiththeShuffleandSort
step.
Slide 33
MapReduce
Dr.J.Praveenchandar/CSE
•Reducer−TheReducertakesthegroupedkey-valuepaireddataas
inputandrunsaReducerfunctiononeachoneofthem.
•Here,thedatacanbeaggregated,filtered,andcombinedinanumber
ofways,anditrequiresawiderangeofprocessing.
•Oncetheexecutionisover,itgiveszeroormorekey-valuepairsto
thefinalstep.
•OutputPhase−Intheoutputphase,wehaveanoutputformatter
thattranslatesthefinalkey-valuepairsfromtheReducerfunction
andwritesthemontoafileusingarecordwriter.
Slide 34
Map&fReduce
Dr.J.Praveenchandar/CSE
Slide 35
MapReduce-Example
•Letustakeareal-worldexampletocomprehendthepowerof
MapReduce.
•Twitterreceivesaround500milliontweetsperday,whichisnearly
3000tweetspersecond.
•ThefollowingillustrationshowshowTweetermanagesitstweets
withthehelpofMapReduce.
Dr.J.Praveenchandar/CSE
Slide 36
MapReduce
Dr.J.Praveenchandar/CSE
•MapReducealgorithmperformsthefollowingactions−
•Tokenize−Tokenizesthetweetsintomapsoftokensandwrites
themaskey-valuepairs.
•Filter−Filtersunwantedwordsfromthemapsoftokensandwrites
thefilteredmapsaskey-valuepairs.
•Count−Generatesatokencounterperword.
•AggregateCounters−Preparesanaggregateofsimilarcounter
valuesintosmallmanageableunits.
Slide 37
MapReduce-Algorithm
•TheMapReducealgorithmcontainstwoimportanttasks,namely
MapandReduce.
•ThemaptaskisdonebymeansofMapperClass
•ThereducetaskisdonebymeansofReducerClass.
•Mapperclasstakestheinput,tokenizesit,mapsandsortsit.The
outputofMapperclassisusedasinputbyReducerclass,whichin
turnsearchesmatchingpairsandreducesthem.
Dr.J.Praveenchandar/CSE
Slide 38
MapReduce-Algorithm
Dr.J.Praveenchandar/CSE
•MapReduceimplementsvariousmathematicalalgorithmstodividea
taskintosmallpartsandassignthemtomultiplesystems.In
technicalterms,MapReducealgorithmhelpsinsendingtheMap&
Reducetaskstoappropriateserversinacluster.
Thesemathematicalalgorithmsmayincludethefollowing−
•Sorting
•Searching
•Indexing
•TF-IDF
Slide 39
MapReduce-Algorithm
Dr.J.Praveenchandar/CSE
Sorting
•SortingisoneofthebasicMapReducealgorithmstoprocessand
analyzedata.
•MapReduceimplementssortingalgorithmtoautomaticallysortthe
outputkey-valuepairsfromthemapperbytheirkeys.
Searching
•SearchingplaysanimportantroleinMapReducealgorithm.Ithelps
inthecombinerphase(optional)andintheReducerphase.
•LetustrytounderstandhowSearchingworkswiththehelpofan
example.
Slide 40
MapReduce-Algorithm
Dr.J.Praveenchandar/CSE
Indexing
•Normallyindexingisusedtopointtoaparticulardataanditsaddress.
•ItperformsbatchindexingontheinputfilesforaparticularMapper.
TF-IDF
•TF-IDFisatextprocessingalgorithmwhichisshortforTermFrequency−
InverseDocumentFrequency.
•Itisoneofthecommonwebanalysisalgorithms.Here,theterm'frequency'
referstothenumberoftimesatermappearsinadocument.
TermFrequency(TF)
•Itmeasureshowfrequentlyaparticulartermoccursinadocument.
•Itiscalculatedbythenumberoftimesawordappearsinadocument
dividedbythetotalnumberofwordsinthatdocument.
Slide 41
MapReduceArchitecture
Dr.J.Praveenchandar/CSE
•MapReduceandHDFSarethetwomajorcomponents
ofHadoopwhichmakesitsopowerfulandefficienttouse.
•MapReduceisaprogrammingmodelusedforefficientprocessingin
paralleloverlargedata-setsinadistributedmanner.
•Thedataisfirstsplitandthencombinedtoproducethefinal
result.
•ThepurposeofMapReduceinHadoopistoMapeachofthejobsand
thenitwillreduceittoequivalenttasksforprovidingless
overheadovertheclusternetworkandtoreducetheprocessing
power.
•TheMapReducetaskismainlydividedintotwophasesMap
PhaseandReducePhase.
Slide 42
Dr.J.Praveenchandar/CSE
Slide 43
ComponentsofMapReduceArchitecture:
Dr.J.Praveenchandar/CSE
•Client:TheMapReduceclientistheonewhobringstheJobtothe
MapReduceforprocessing.
•Job:TheMapReduceJobistheactualworkthattheclientwantedto
dowhichiscomprisedofsomanysmallertasksthattheclientwants
toprocessorexecute.
•HadoopMapReduceMaster:Itdividestheparticularjobinto
subsequentjob-parts.
•Job-Parts:Thetaskorsub-jobsthatareobtainedafterdividingthe
mainjob
•InputData:ThedatasetthatisfedtotheMapReduceforprocessing.
•OutputData:Thefinalresultisobtainedaftertheprocessing.
Slide 44
Jobtrackerandthetasktracker
Dr.J.Praveenchandar/CSE
•JobTracker:TheworkofJobtrackeristomanagealltheresources
andallthejobsacrosstheclusterandalsotoscheduleeachmapon
theTaskTrackerrunningonthesamedatanodesincetherecanbe
hundredsofdatanodesavailableinthecluster.
•TaskTracker:TheTaskTrackercanbeconsideredastheactual
slavesthatareworkingontheinstructiongivenbytheJobTracker.
ThisTaskTrackerisdeployedoneachofthenodesavailableinthe
clusterthatexecutestheMapandReducetaskasinstructedbyJob
Tracker.
Slide 45
UNDERSTANDINGINPUTSANDOUTPUTSINMAPREDUCE
Dr.J.Praveenchandar/CSE
Slide 46
INPUTSANDOUTPUTSINMAPREDUCE
•Datainput:-
•ThetwoclassesthatsupportdatainputinMapReduceare
InputFormatandRecord-Reader.
•TheInputFormatclassisconsultedtodeterminehowtheinputdata
shouldbepartitionedforthemaptasks,andtheRecordReader
performsthereadingofdatafromtheinputs.
Dr.J.Praveenchandar/CSE
Slide 47
INPUTSANDOUTPUTSINMAPREDUCE
Dr.J.Praveenchandar/CSE
Dataoutput:-
•MapReduceusesasimilarprocessforsupportingoutputdataasit
doesforinputdata.
•Twoclassesmustexist,anOutputFormatandaRecordWriter.
•TheOutputFormatperformssomebasicvalidationofthedatasink
properties,andtheRecordWriterwriteseachreduceroutputtothe
datasink.
Slide 48
AnatomyofaMapReduceJobRun
Dr.J.Praveenchandar/CSE
•YoucanrunaMapReducejobwithasinglemethodcall:submit()on
aJobobject(youcanalsocallwaitForCompletion(),
•whichsubmitsthejobifithasn’tbeensubmittedalready,thenwaits
forittofinish
•Thismethodcallconcealsagreatdealofprocessingbehindthe
scenes.ThissectionuncoversthestepsHadooptakestorunajob.
Slide 49
AnatomyofaMapReduceJobRun
Dr.J.Praveenchandar/CSE
Herearefiveindependententities
•Theclient,whichsubmitstheMapReducejob.
•TheYARNresourcemanager,whichcoordinatestheallocationofcompute
resourcesonthecluster.
•TheYARNnodemanagers,whichlaunchandmonitorthecompute
containersonmachinesinthecluster.
•TheMapReduceapplicationmaster,whichcoordinatesthetasksrunning
theMapReducejob.TheapplicationmasterandtheMapReducetasksrun
incontainersthatarescheduledbytheresourcemanagerandmanaged
bythenodemanagers.
•Thedistributedfilesystem(normallyHDFS)whichisusedforsharingjob
filesbetweentheotherentities.
Slide 50
Dr.J.Praveenchandar/CSE
Slide 51
FailuresinClassicMapReduce
Dr.J.Praveenchandar/CSE
•IntheMapReduce1runtimetherearethreefailuremodesto
consider:failureoftherunningtask,failureofthetastracker,and
failureofthejobtracker.Let’slookateachinturn.
TaskFailure
•Considerfirstthecaseofthechildtaskfailing.
•Themostcommonwaythatthishappensiswhenusercodeinthe
maporreducetaskthrowsaruntimeexception.
•Ifthishappens,thechildJVMreportstheerrorbacktoitsparent
tasktracker,beforeitexits.Theerrorultimatelymakesitintothe
userlogs.
•Thetasktrackermarksthetaskattemptasfailed,freeingupaslotto
runanothertask.
Slide 52
FailuresinClassicMapReduce
Dr.J.Praveenchandar/CSE
TasktrackerFailure
•Failureofatasktrackerisanotherfailuremode.
•Ifatasktrackerfailsbycrashing,orrunningveryslowly,itwillstop
sendingheartbeatstothejobtracker(orsendthemvery
infrequently).
•Thejobtrackerwillnoticeatasktrackerthathasstoppedsending
heartbeats.
•Atasktrackercanalsobeblacklistedbythejobtracker,evenifthe
tasktrackerhasnotfailed.
Slide 53
FailuresinClassicMapReduce
Dr.J.Praveenchandar/CSE
JobtrackerFailure
•Failureofthejobtrackeristhemostseriousfailuremode.
•Hadoophasnomechanismfordealingwithfailureofthe
jobtracker—itisasinglepointoffailure—sointhiscasethejobfails.
•However,thisfailuremodehasalowchanceofoccurring,sincethe
chanceofaparticularmachinefailingislow.
•Afterrestartingajobtracker,anyjobsthatwererunningatthetimeit
wasstoppedwillneedtobere-submitted.
Tags
Categories
General
Download
Download Slideshow
Get the original presentation file
Quick Actions
Embed
Share
Save
Print
Full
Report
Statistics
Views
1,259
Slides
53
Favorites
1
Age
630 days
Related Slideshows
22
Pray For The Peace Of Jerusalem and You Will Prosper
RodolfoMoralesMarcuc
30 views
26
Don_t_Waste_Your_Life_God.....powerpoint
chalobrido8
32 views
31
VILLASUR_FACTORS_TO_CONSIDER_IN_PLATING_SALAD_10-13.pdf
JaiJai148317
30 views
14
Fertility awareness methods for women in the society
Isaiah47
29 views
35
Chapter 5 Arithmetic Functions Computer Organisation and Architecture
RitikSharma297999
26 views
5
syakira bhasa inggris (1) (1).pptx.......
ourcommunity56
28 views
View More in This Category
Embed Slideshow
Dimensions
Width (px)
Height (px)
Start Page
Which slide to start from (1-53)
Options
Auto-play slides
Show controls
Embed Code
Copy Code
Share Slideshow
Share on Social Media
Share on Facebook
Share on Twitter
Share on LinkedIn
Share via Email
Or copy link
Copy
Report Content
Reason for reporting
*
Select a reason...
Inappropriate content
Copyright violation
Spam or misleading
Offensive or hateful
Privacy violation
Other
Slide number
Leave blank if it applies to the entire slideshow
Additional details
*
Help us understand the problem better