HADOOP AND MAPREDUCE ARCHITECTURE-Unit-5.ppt

1,259 views 53 slides Mar 11, 2024
Slide 1
Slide 1 of 53
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30
Slide 31
31
Slide 32
32
Slide 33
33
Slide 34
34
Slide 35
35
Slide 36
36
Slide 37
37
Slide 38
38
Slide 39
39
Slide 40
40
Slide 41
41
Slide 42
42
Slide 43
43
Slide 44
44
Slide 45
45
Slide 46
46
Slide 47
47
Slide 48
48
Slide 49
49
Slide 50
50
Slide 51
51
Slide 52
52
Slide 53
53

About This Presentation

fgfgf


Slide Content

CSA15-CLOUDCOMPUTINGANDBIGDATAANALYTICS
Dr.J.Praveenchandar
AssociateProfessor/CSE
HADOOPANDMAPREDUCE
ARCHITECTURE
Dr.J.Praveenchandar/CSE

HADOOPANDMAPREDUCEARCHITECTURE
Dr.J.Praveenchandar/CSE
Bigdata–ApacheHadoop&HadoopEcoSystem–Analyzingdata
withHadoopstreaming–HDFSconcept–InterfacetoHDFS-
MovingDatainandoutofHadoop–IntroductiontoMapReduce–
MapReduceAlgorithmandArchitecture–Understandinginputs
andoutputsofMapReduce-AnatomyofMapReduceJobrun–
FailuresinclassicalMapReduceandYARN–Jobscheduling-Data
Serialization.

Big data
•BigDataisacollectionofdatathatishugeinvolume,yetgrowing
exponentiallywithtime.
•Itisadatawithsolargesizeandcomplexitythatnoneoftraditional
datamanagementtoolscanstoreitorprocessitefficiently.
•Bigdataisalsoadatabutwithhugesize.
ExampleofBigData
•NewYorkStockExchange SocialMedia
Dr.J.Praveenchandar/CSE

ApacheHadoop&HadoopEcosystem
•ApacheHadoopisanopensourceframework
intendedtomakeinteractionwithbigdataeasier,
•Hadoophasmadeitsplaceintheindustriesand
companiesthatneedtoworkonlargedatasets
whicharesensitiveandneedsefficienthandling.
•Hadoopisaframeworkthatenablesprocessingof
largedatasetswhichresideintheformofclusters.
•Beingaframework,Hadoopismadeupofseveral
modulesthataresupportedbyalargeecosystemof
technologies.
Dr.J.Praveenchandar/CSE

Amulti-node Hadoopcluster
Dr.J.Praveenchandar/CSE

ApacheHadoop&HadoopEcosystem
Dr.J.Praveenchandar/CSE
•HadoopEcosystemisaplatformorasuitewhichprovidesvarious
servicestosolvethebigdataproblems.
TherearefourmajorelementsofHadoopi.e.
•HDFS,
•MapReduce,
•YARN,and
•HadoopCommon.

Dr.J.Praveenchandar/CSE

ComponentsthatcollectivelyformaHadoopecosystem
Dr.J.Praveenchandar/CSE
•HDFS:HadoopDistributedFileSystem
•YARN:YetAnotherResourceNegotiator
•MapReduce:ProgrammingbasedDataProcessing
•Spark:In-Memorydataprocessing
•PIG,HIVE:Querybasedprocessingofdataservices
•HBase:NoSQLDatabase
•Mahout,SparkMLLib:MachineLearningalgorithmlibraries
•Solar,Lucene:SearchingandIndexing
•Zookeeper:Managingcluster
•Oozie:JobScheduling

HDFS:
Dr.J.Praveenchandar/CSE
•HDFSistheprimaryormajorcomponentofHadoopecosystemand
isresponsibleforstoringlargedatasetsofstructuredor
unstructureddataacrossvariousnodesandtherebymaintainingthe
metadataintheformoflogfiles.
•HDFSconsistsoftwocorecomponentsi.e.
Namenode
DataNode

YARN:
Dr.J.Praveenchandar/CSE
•YetAnotherResourceNegotiator,asthenameimplies,YARNisthe
onewhohelpstomanagetheresourcesacrosstheclusters.Inshort,
itperformsschedulingandresourceallocationfortheHadoop
System.
•Consistsofthreemajorcomponentsi.e.
ResourceManager
NodesManager
ApplicationManager

MapReduce:
Dr.J.Praveenchandar/CSE
•Bymakingtheuseofdistributedandparallelalgorithms,MapReduce
makesitpossibletocarryovertheprocessing’slogicandhelpsto
writeapplicationswhichtransformbigdatasetsintoamanageable
one.
•MapReducemakestheuseoftwofunctionsi.e.Map()andReduce()
whosetaskis:
Map()performssortingandfilteringofdataandtherebyorganizingthemin
theformofgroup.Mapgeneratesakey-valuepairbasedresultwhichislater
onprocessedbytheReduce()method.
Reduce(),asthenamesuggestsdoesthesummarizationbyaggregatingthe
mappeddata.Insimple,Reduce()takestheoutputgeneratedbyMap()as
inputandcombinesthosetuplesintosmallersetoftuples.

PIG:
Dr.J.Praveenchandar/CSE
•PigwasbasicallydevelopedbyYahoowhichworksonapigLatin
language,whichisQuerybasedlanguagesimilartoSQL.
•Itisaplatformforstructuringthedataflow,processingand
analyzinghugedatasets.
•Pigdoestheworkofexecutingcommandsandinthebackground,all
theactivitiesofMapReducearetakencareof.
•Aftertheprocessing,pigstorestheresultinHDFS.

HIVE:
Dr.J.Praveenchandar/CSE
•WiththehelpofSQLmethodologyandinterface,HIVEperforms
readingandwritingoflargedatasets.
•However, itsquerylanguageiscalledasHQL(HiveQueryLanguage).
•Itishighlyscalableasitallowsreal-timeprocessingandbatch
processingboth.
•Also,alltheSQLdatatypesaresupportedbyHivethus,makingthe
queryprocessingeasier.
•SimilartotheQueryProcessingframeworks,HIVEtoocomeswith
twocomponents:JDBCDriversandHIVECommandLine.

ApacheSpark:
Dr.J.Praveenchandar/CSE
•It’saplatformthathandlesalltheprocessconsumptivetaskslike
batchprocessing,interactiveoriterativereal-timeprocessing,graph
conversions,andvisualization,etc.
•Itconsumesinmemoryresourceshence,thusbeingfasterthanthe
priorintermsofoptimization.
•Sparkisbestsuitedforreal-timedatawhereasHadoopisbestsuited
forstructureddataorbatchprocessing,hencebothareusedinmost
ofthecompaniesinterchangeably.

Dr.J.Praveenchandar/CSE

HadoopStreaming
Dr.J.Praveenchandar/CSE
•ItisautilityorfeaturethatcomeswithaHadoopdistributionthat
allowsdevelopersorprogrammerstowritetheMap-Reduce
programusingdifferentprogramminglanguageslikeRuby,Perl,
Python,C++
•Ifwearereadinganimagedatathenwecangeneratekey-valuepair
foreachpixelwherethekeywillbethelocationofthepixelandthe
valuewillbeitscolorvaluefrom(0-255)foracoloredimage.
•Nowthislistofkey-valuepairsisfedtotheMapphaseandMapper
willworkoneachofthesekey-valuepairofeachpixelandgenerate
someintermediatekey-valuepairswhicharethenfedtothe
Reducerafterdoingshufflingandsortingthenthefinaloutput
producedbythereducerwillbewrittentotheHDFS.

HDFSconcept
Dr.J.Praveenchandar/CSE
•TheHadoopDistributedFileSystem(HDFS)istheprimarydata
storagesystemusedbyHadoopapplications.
•HDFSemploysaNameNodeandDataNodearchitectureto
implementadistributedfilesystemthatprovideshigh-performance
accesstodataacrosshighlyscalableHadoopclusters.
•HDFSenablestherapidtransferofdatabetweencomputenodes.
•Atitsoutset,itwascloselycoupledwithMapReduce,aframework
fordataprocessingthatfiltersanddividesupworkamongthenodes
inacluster,anditorganizesandcondensestheresultsintoa
cohesiveanswertoaquery.

Dr.J.Praveenchandar/CSE

HDFS
Dr.J.Praveenchandar/CSE
•HDFSusesaprimary/secondaryarchitecture.
•TheHDFScluster'sNameNodeistheprimaryserverthatmanages
thefilesystemnamespaceandcontrolsclientaccesstofiles.
•AsthecentralcomponentoftheHadoopDistributedFileSystem,the
NameNodemaintainsandmanagesthefilesystemnamespaceand
providesclientswiththerightaccesspermissions.
•Thesystem'sDataNodesmanagethestoragethat'sattachedtothe
nodestheyrun

HDFS
Dr.J.Praveenchandar/CSE
•HDFSexposesafilesystemnamespaceandenablesuserdatatobe
storedinfiles.
•Afileissplitintooneormoreoftheblocksthatarestoredinasetof
DataNodes.
•TheNameNodeperformsfilesystemnamespaceoperations,
includingopening,closingandrenamingfilesanddirectories.
•TheNameNodealsogovernsthemappingofblockstothe
DataNodes.
•TheDataNodesservereadandwriterequestsfromtheclientsofthe
filesystem.Inaddition,theyperformblockcreation,deletionand
replicationwhentheNameNodeinstructsthemtodoso.

HDFS
Dr.J.Praveenchandar/CSE
•HDFSsupportsatraditionalhierarchicalfileorganization.
•Anapplicationorusercancreatedirectoriesandthenstorefiles
insidethesedirectories.
•Thefilesystemnamespacehierarchyislikemostotherfilesystems--
ausercancreate,remove,renameormovefilesfromonedirectory
toanother.

FeaturesofHDFS
ThereareseveralfeaturesthatmakeHDFSparticularlyuseful,
including
Datareplication.Thisisusedtoensurethatthedataisalways
availableandpreventsdataloss.
Forexample,whenanodecrashesorthereisahardwarefailure,
replicateddatacanbepulledfromelsewherewithinacluster,so
processingcontinueswhiledataisrecovered.
Faulttoleranceandreliability.HDFS'abilitytoreplicatefileblocks
andstorethemacrossnodesinalargeclusterensuresfaulttolerance
andreliability.
Highavailability.Asmentionedearlier,becauseofreplicationacross
notes,dataisavailableeveniftheNameNodeoraDataNodefails.
Dr.J.Praveenchandar/CSE

FeaturesofHDFS
Dr.J.Praveenchandar/CSE
•Scalability.BecauseHDFSstoresdataonvariousnodesinthe
cluster,asrequirementsincrease,aclustercanscaletohundredsof
nodes.
•Highthroughput.BecauseHDFSstoresdatainadistributed
manner,thedatacanbeprocessedinparallelonaclusterofnodes.
This,plusdatalocality(seenextbullet),cuttheprocessingtimeand
enablehighthroughput.
•Datalocality.WithHDFS,computationhappensontheDataNodes
wherethedataresides,ratherthanhavingthedatamovetowhere
thecomputationalunitis.

BenefitsofusingHDFS
Dr.J.Praveenchandar/CSE
•Costeffectiveness.
•Largedatasetstorage.
•Fastrecoveryfromhardwarefailure.
•Portability.
•Streamingdataaccess.

HDFSusecasesandexamples
Dr.J.Praveenchandar/CSE
•TheHadoopDistributedFileSystememergedatYahooasapartof
thatcompany'sonlineadplacementandsearchengine
requirements.
•Likeotherweb-basedcompanies,Yahoojuggledavarietyof
applicationsthatwereaccessedbyanincreasingnumberofusers,
whowerecreatingmoreandmoredata.
•EBay,Facebook,LinkedInandTwitterareamongthecompanies
thatusedHDFStounderpinbigdataanalyticstoaddress
requirementssimilartoYahoo's.

MovingdataintoandoutofHadoop
Dr.J.Praveenchandar/CSE
•Datamovementisoneofthosethingsthatyouaren’tlikelytothink
toomuchaboutuntilyou’refullycommittedtousingHadoopona
project,atwhichpointitbecomesthisbigscaryunknownthathasto
betackled.
•Ingressandegressrefertodatamovementintoandoutofasystem,
respectively.
Keyelementsofdatamovement
•MovinglargequantitiesofdatainandoutofHadoopofferslogistical
challengesthatincludeconsistencyguaranteesandresourceimpacts
ondatasourcesanddestinations.

Dr.J.Praveenchandar/CSE

Keyelementsofdatamovement
Dr.J.Praveenchandar/CSE
•Idempotence:Anidempotentoperationproducesthesameresultno
matterhowmanytimesit’sexecuted.
•Aggregation:ItisperformedtoacquirethefinalresultoftheMapReduce
job,thatiscombiningtheoutputoftheMapperanddisplayingthe
result.
•Dataformattransformation
Thedataformattransformationprocessconvertsonedataformat
intoanother.
•Monitoring
ensuresthatfunctionsareperformingasexpectedinMonitoring
automated
systems.
•Dataformattransformation
Thedataformattransformationprocessconvertsonedataformatinto
another.

MapReduce
Dr.J.Praveenchandar/CSE
•MapReduceisaprogrammingmodelforwritingapplicationsthat
canprocessBigDatainparallelonmultiplenodes.
•MapReduceprovidesanalyticalcapabilitiesforanalyzinghuge
volumesofcomplexdata.
•TraditionalEnterpriseSystemsnormallyhaveacentralizedserverto
storeandprocessdata.
•Traditionalmodeliscertainlynotsuitabletoprocesshugevolumes
ofscalabledataandcannotbeaccommodatedbystandarddatabase
servers.
•Moreover,thecentralizedsystemcreatestoomuchofabottleneck
whileprocessingmultiplefilessimultaneously.

MapReduceWorks
Dr.J.Praveenchandar/CSE
•TheMapReducealgorithmcontainstwoimportanttasks,namely
MapandReduce.
•TheMaptasktakesasetofdataandconvertsitintoanothersetof
data,whereindividualelementsarebrokendownintotuples(key-
valuepairs).
•TheReducetasktakestheoutputfromtheMapasaninputand
combinesthosedatatuples(key-valuepairs)intoasmallersetof
tuples.
•Thereducetaskisalwaysperformedafterthemapjob.

MapReduce
Dr.J.Praveenchandar/CSE

MapReduce
Dr.J.Praveenchandar/CSE
•InputPhase−HerewehaveaRecordReaderthattranslateseach
recordinaninputfileandsendstheparseddatatothemapperin
theformofkey-valuepairs.
•Map−Mapisauser-definedfunction,whichtakesaseriesofkey-
valuepairsandprocesseseachoneofthemtogeneratezeroormore
key-valuepairs.
•IntermediateKeys−Theykey-valuepairsgeneratedbythemapper
areknownasintermediatekeys.
•Combiner−AcombinerisatypeoflocalReducerthatgroups
similardatafromthemapphaseintoidentifiablesets.
•ShuffleandSort−TheReducertaskstartswiththeShuffleandSort
step.

MapReduce
Dr.J.Praveenchandar/CSE
•Reducer−TheReducertakesthegroupedkey-valuepaireddataas
inputandrunsaReducerfunctiononeachoneofthem.
•Here,thedatacanbeaggregated,filtered,andcombinedinanumber
ofways,anditrequiresawiderangeofprocessing.
•Oncetheexecutionisover,itgiveszeroormorekey-valuepairsto
thefinalstep.
•OutputPhase−Intheoutputphase,wehaveanoutputformatter
thattranslatesthefinalkey-valuepairsfromtheReducerfunction
andwritesthemontoafileusingarecordwriter.

Map&fReduce
Dr.J.Praveenchandar/CSE

MapReduce-Example
•Letustakeareal-worldexampletocomprehendthepowerof
MapReduce.
•Twitterreceivesaround500milliontweetsperday,whichisnearly
3000tweetspersecond.
•ThefollowingillustrationshowshowTweetermanagesitstweets
withthehelpofMapReduce.
Dr.J.Praveenchandar/CSE

MapReduce
Dr.J.Praveenchandar/CSE
•MapReducealgorithmperformsthefollowingactions−
•Tokenize−Tokenizesthetweetsintomapsoftokensandwrites
themaskey-valuepairs.
•Filter−Filtersunwantedwordsfromthemapsoftokensandwrites
thefilteredmapsaskey-valuepairs.
•Count−Generatesatokencounterperword.
•AggregateCounters−Preparesanaggregateofsimilarcounter
valuesintosmallmanageableunits.

MapReduce-Algorithm
•TheMapReducealgorithmcontainstwoimportanttasks,namely
MapandReduce.
•ThemaptaskisdonebymeansofMapperClass
•ThereducetaskisdonebymeansofReducerClass.
•Mapperclasstakestheinput,tokenizesit,mapsandsortsit.The
outputofMapperclassisusedasinputbyReducerclass,whichin
turnsearchesmatchingpairsandreducesthem.
Dr.J.Praveenchandar/CSE

MapReduce-Algorithm
Dr.J.Praveenchandar/CSE
•MapReduceimplementsvariousmathematicalalgorithmstodividea
taskintosmallpartsandassignthemtomultiplesystems.In
technicalterms,MapReducealgorithmhelpsinsendingtheMap&
Reducetaskstoappropriateserversinacluster.
Thesemathematicalalgorithmsmayincludethefollowing−
•Sorting
•Searching
•Indexing
•TF-IDF

MapReduce-Algorithm
Dr.J.Praveenchandar/CSE
Sorting
•SortingisoneofthebasicMapReducealgorithmstoprocessand
analyzedata.
•MapReduceimplementssortingalgorithmtoautomaticallysortthe
outputkey-valuepairsfromthemapperbytheirkeys.
Searching
•SearchingplaysanimportantroleinMapReducealgorithm.Ithelps
inthecombinerphase(optional)andintheReducerphase.
•LetustrytounderstandhowSearchingworkswiththehelpofan
example.

MapReduce-Algorithm
Dr.J.Praveenchandar/CSE
Indexing
•Normallyindexingisusedtopointtoaparticulardataanditsaddress.
•ItperformsbatchindexingontheinputfilesforaparticularMapper.
TF-IDF
•TF-IDFisatextprocessingalgorithmwhichisshortforTermFrequency−
InverseDocumentFrequency.
•Itisoneofthecommonwebanalysisalgorithms.Here,theterm'frequency'
referstothenumberoftimesatermappearsinadocument.
TermFrequency(TF)
•Itmeasureshowfrequentlyaparticulartermoccursinadocument.
•Itiscalculatedbythenumberoftimesawordappearsinadocument
dividedbythetotalnumberofwordsinthatdocument.

MapReduceArchitecture
Dr.J.Praveenchandar/CSE
•MapReduceandHDFSarethetwomajorcomponents
ofHadoopwhichmakesitsopowerfulandefficienttouse.
•MapReduceisaprogrammingmodelusedforefficientprocessingin
paralleloverlargedata-setsinadistributedmanner.
•Thedataisfirstsplitandthencombinedtoproducethefinal
result.
•ThepurposeofMapReduceinHadoopistoMapeachofthejobsand
thenitwillreduceittoequivalenttasksforprovidingless
overheadovertheclusternetworkandtoreducetheprocessing
power.
•TheMapReducetaskismainlydividedintotwophasesMap
PhaseandReducePhase.

Dr.J.Praveenchandar/CSE

ComponentsofMapReduceArchitecture:
Dr.J.Praveenchandar/CSE
•Client:TheMapReduceclientistheonewhobringstheJobtothe
MapReduceforprocessing.
•Job:TheMapReduceJobistheactualworkthattheclientwantedto
dowhichiscomprisedofsomanysmallertasksthattheclientwants
toprocessorexecute.
•HadoopMapReduceMaster:Itdividestheparticularjobinto
subsequentjob-parts.
•Job-Parts:Thetaskorsub-jobsthatareobtainedafterdividingthe
mainjob
•InputData:ThedatasetthatisfedtotheMapReduceforprocessing.
•OutputData:Thefinalresultisobtainedaftertheprocessing.

Jobtrackerandthetasktracker
Dr.J.Praveenchandar/CSE
•JobTracker:TheworkofJobtrackeristomanagealltheresources
andallthejobsacrosstheclusterandalsotoscheduleeachmapon
theTaskTrackerrunningonthesamedatanodesincetherecanbe
hundredsofdatanodesavailableinthecluster.
•TaskTracker:TheTaskTrackercanbeconsideredastheactual
slavesthatareworkingontheinstructiongivenbytheJobTracker.
ThisTaskTrackerisdeployedoneachofthenodesavailableinthe
clusterthatexecutestheMapandReducetaskasinstructedbyJob
Tracker.

UNDERSTANDINGINPUTSANDOUTPUTSINMAPREDUCE
Dr.J.Praveenchandar/CSE

INPUTSANDOUTPUTSINMAPREDUCE
•Datainput:-
•ThetwoclassesthatsupportdatainputinMapReduceare
InputFormatandRecord-Reader.
•TheInputFormatclassisconsultedtodeterminehowtheinputdata
shouldbepartitionedforthemaptasks,andtheRecordReader
performsthereadingofdatafromtheinputs.
Dr.J.Praveenchandar/CSE

INPUTSANDOUTPUTSINMAPREDUCE
Dr.J.Praveenchandar/CSE
Dataoutput:-
•MapReduceusesasimilarprocessforsupportingoutputdataasit
doesforinputdata.
•Twoclassesmustexist,anOutputFormatandaRecordWriter.
•TheOutputFormatperformssomebasicvalidationofthedatasink
properties,andtheRecordWriterwriteseachreduceroutputtothe
datasink.

AnatomyofaMapReduceJobRun
Dr.J.Praveenchandar/CSE
•YoucanrunaMapReducejobwithasinglemethodcall:submit()on
aJobobject(youcanalsocallwaitForCompletion(),
•whichsubmitsthejobifithasn’tbeensubmittedalready,thenwaits
forittofinish
•Thismethodcallconcealsagreatdealofprocessingbehindthe
scenes.ThissectionuncoversthestepsHadooptakestorunajob.

AnatomyofaMapReduceJobRun
Dr.J.Praveenchandar/CSE
Herearefiveindependententities
•Theclient,whichsubmitstheMapReducejob.
•TheYARNresourcemanager,whichcoordinatestheallocationofcompute
resourcesonthecluster.
•TheYARNnodemanagers,whichlaunchandmonitorthecompute
containersonmachinesinthecluster.
•TheMapReduceapplicationmaster,whichcoordinatesthetasksrunning
theMapReducejob.TheapplicationmasterandtheMapReducetasksrun
incontainersthatarescheduledbytheresourcemanagerandmanaged
bythenodemanagers.
•Thedistributedfilesystem(normallyHDFS)whichisusedforsharingjob
filesbetweentheotherentities.

Dr.J.Praveenchandar/CSE

FailuresinClassicMapReduce
Dr.J.Praveenchandar/CSE
•IntheMapReduce1runtimetherearethreefailuremodesto
consider:failureoftherunningtask,failureofthetastracker,and
failureofthejobtracker.Let’slookateachinturn.
TaskFailure
•Considerfirstthecaseofthechildtaskfailing.
•Themostcommonwaythatthishappensiswhenusercodeinthe
maporreducetaskthrowsaruntimeexception.
•Ifthishappens,thechildJVMreportstheerrorbacktoitsparent
tasktracker,beforeitexits.Theerrorultimatelymakesitintothe
userlogs.
•Thetasktrackermarksthetaskattemptasfailed,freeingupaslotto
runanothertask.

FailuresinClassicMapReduce
Dr.J.Praveenchandar/CSE
TasktrackerFailure
•Failureofatasktrackerisanotherfailuremode.
•Ifatasktrackerfailsbycrashing,orrunningveryslowly,itwillstop
sendingheartbeatstothejobtracker(orsendthemvery
infrequently).
•Thejobtrackerwillnoticeatasktrackerthathasstoppedsending
heartbeats.
•Atasktrackercanalsobeblacklistedbythejobtracker,evenifthe
tasktrackerhasnotfailed.

FailuresinClassicMapReduce
Dr.J.Praveenchandar/CSE
JobtrackerFailure
•Failureofthejobtrackeristhemostseriousfailuremode.
•Hadoophasnomechanismfordealingwithfailureofthe
jobtracker—itisasinglepointoffailure—sointhiscasethejobfails.
•However,thisfailuremodehasalowchanceofoccurring,sincethe
chanceofaparticularmachinefailingislow.
•Afterrestartingajobtracker,anyjobsthatwererunningatthetimeit
wasstoppedwillneedtobere-submitted.
Tags