Heat Treatment of Steelddddddddddddddddddddddddddddddd.ppt

SulimanAlkabaele1 31 views 21 slides Jul 21, 2024
Slide 1
Slide 1 of 21
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21

About This Presentation

dfdf


Slide Content

Heat Treatment
of Steel
سنوي ناميلس

Heat-Treatment
Heat treatmentis a method used to alter the
physical, and sometimes chemical properties of a
material. The most common application is
metallurgical
It involves the use of heating or cooling, normally
to extreme temperatures, to achieve a desired
result such as hardeningor softeningof a material
It applies only to processes where the heating and
cooling are done for the specific purpose of
altering properties intentionally

Types of Heat-Treatment (Steel)
Annealing / Normalizing,
Case hardening,
Precipitation hardening,
Tempering, and Quenching

Figure -Phase diagramam for iron-carbon system, up to about
6% carbon

Iron has Several Phases,
depending on Temperature
Thephaseatroomtemperatureisalpha(),
calledferrite(BCC)
At912C(1674F),ferritetransformsto
gamma(),calledaustenite(FCC)
Thistransformsat1394C(2541F)todelta
()(BCC)
Pureironmeltsat1539C(2802F)

Iron as a Commercial Product
Electrolyticiron-themostpure,atabout99.99%,
forresearchandotherpurposeswherethepure
metalisrequired
Ingotiron-containsabout0.1%impurities
(includingabout0.01%carbon),usedin
applicationswherehighductilityorcorrosion
resistanceareneeded
Wroughtiron-containsabout3%slagbutvery
littlecarbon,andiseasilyshapedinhotforming
operationssuchasforging

Solubility Limits of Carbon in Iron
Ferritephasecandissolveonlyabout0.022%
carbonat723C(1333F)
Austenitecandissolveuptoabout2.1%
carbonat1130C(2066F)
Thedifferenceinsolubilitybetweenalphaand
gammaprovidesopportunitiesforstrengthening
byheattreatment

Time-Temperature-Transformation
(TTT)Curve
TTTdiagramisaplotoftemperatureversusthe
logarithmoftimeforasteelalloyofdefinite
composition.
Itisusedtodeterminewhentransformationsbegin
andendforanisothermalheattreatmentofa
previouslyaustenitizedalloy
TTTdiagramindicateswhenaspecifictransformation
startsandendsanditalsoshowswhatpercentageof
transformationofausteniteataparticulartemperature
isachieved.

The TTT diagram for AISI 1080 steel (0.79%C, 0.76%Mn) austenitised at
900°C
Time-Temperature-Transformation
(TTT)Curve

Decarburization during Heat Treatment
Decreaseincontentofcarboninmetalsiscalled
Decarburization
Itisbasedontheoxidationatthesurfaceofcarbon
thatisdissolvedinthemetallattice
Inheattreatmentprocessesironandcarbonusually
oxidizesimultaneously
Duringtheoxidationofcarbon,gaseousproducts
(COandCO
2)develop
Inthecaseofascalelayer,substantial
decarburizationispossibleonlywhenthegaseous
productscanescape

Decarburization Effects
Thestrengthofasteeldependsonthe
presenceofcarbidesinitsstructure
Insuchacasethewearresistanceisobviously
decreased
Inmanycircumstances,therecanbeaserious
dropinfatigueresistance
Toavoidtherealriskoffailureofengineering
components,itisessentialtominimize
decarburizationatallstagesintheprocessingof
steel

Annealing
It is a heat treatment wherein a material is
altered, causing changes in its properties
such as strengthand hardness
It the process of heating solid metal to high
temperatures and cooling it slowly so that its
particles arrange into a defined lattice

Types of Annealing
1.Full Annealing
2.Stress-Relief Annealing (orStress-relieving)
3.Normalizing
4.Isothermal Annealing
5.Spheroidizing Annealing (orSpheroidizing )

+Fe3C

FullAnnealing
raisingthetemperatureabout50ºC(90ºF)abovethe
AustenitictemperaturelineA
3orlineA
CMinthecaseof
Hypoeutectoidsteels(steelswith<0.77%Carbon)and
50ºC(90ºF)intotheAustenite-Cementiteregioninthe
caseofHypereutectoidsteels(steelswith>0.77%
Carbon).
cooledattherateofabout20ºC/hr(36ºF/hr)ina
furnacetoabout50ºC(90ºF)intotheFerrite-Cementite
range.
ThegrainstructurehascoarsePearlitewithferriteor
Cementite(dependingonwhetherhypoorhyper
eutectoid).Thesteelbecomessoftandductile.

ProcessAnnealing
heatingittoabout700ºC(1292ºF)should
suffice.Thisisheldlongenoughtoallow
recrystallizationoftheferritephase,andthen
cooledinstillair.
theonlychangethatoccursisthesize,
shapeanddistributionofthegrainstructure.

Causes of Residual Stresses
1.Thermalfactors(e.g.,thermalstresses
causedbytemperaturegradientswithinthe
workpieceduringheatingorcooling)
2.Mechanicalfactors(e.g.,cold-working)
3.Metallurgicalfactors(e.g.,transformation
ofthemicrostructure)
Stress-Relief Annealing

Stress-Relief Annealing
Itisanannealingprocessbelowthetransformation
temperatureA
1(600-650ºC),withsubsequent
slowcooling,theaimofwhichistoreducethe
internalresidualstressesinaworkpiecewithout
intentionallychangingitsstructureandmechanical
properties

How to Remove Residual Stresses?
R.S.canbereducedonlybyaplasticdeformationin
themicrostructure.
Thisrequiresthattheyieldstrengthofthematerialbe
loweredbelowthevalueoftheresidualstresses.
Themoretheyieldstrengthislowered,thegreaterthe
plasticdeformationandcorrespondinglythegreater
thepossibilityorreducingtheresidualstresses
Theyieldstrengthandtheultimatetensilestrengthof
thesteelbothdecreasewithincreasingtemperature

Stress-Relief Annealing Process
Forplaincarbonandlow-alloysteelsthe
temperaturetowhichthespecimenisheatedis
usuallybetween450to650˚C,whereasforhot-
workingtoolsteelsandhigh-speedsteelsitis
between600to750˚C
Thistreatmentwillnotcauseanyphasechanges,
butrecrystallizationmaytakeplace.
Machiningallowancesufficienttocompensatefor
anywarpingresultingfromstressrelievingshould
beprovided