Heterocyclic compounds Unit-III.pptx

1,800 views 99 slides Dec 03, 2022
Slide 1
Slide 1 of 99
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30
Slide 31
31
Slide 32
32
Slide 33
33
Slide 34
34
Slide 35
35
Slide 36
36
Slide 37
37
Slide 38
38
Slide 39
39
Slide 40
40
Slide 41
41
Slide 42
42
Slide 43
43
Slide 44
44
Slide 45
45
Slide 46
46
Slide 47
47
Slide 48
48
Slide 49
49
Slide 50
50
Slide 51
51
Slide 52
52
Slide 53
53
Slide 54
54
Slide 55
55
Slide 56
56
Slide 57
57
Slide 58
58
Slide 59
59
Slide 60
60
Slide 61
61
Slide 62
62
Slide 63
63
Slide 64
64
Slide 65
65
Slide 66
66
Slide 67
67
Slide 68
68
Slide 69
69
Slide 70
70
Slide 71
71
Slide 72
72
Slide 73
73
Slide 74
74
Slide 75
75
Slide 76
76
Slide 77
77
Slide 78
78
Slide 79
79
Slide 80
80
Slide 81
81
Slide 82
82
Slide 83
83
Slide 84
84
Slide 85
85
Slide 86
86
Slide 87
87
Slide 88
88
Slide 89
89
Slide 90
90
Slide 91
91
Slide 92
92
Slide 93
93
Slide 94
94
Slide 95
95
Slide 96
96
Slide 97
97
Slide 98
98
Slide 99
99

About This Presentation

Heterocyclic compounds Unit-III


Slide Content

HETEROCYCLIC COMPOUNDS Mr.P.S.Kore Assistant Professor(Research Scholar) Department of Pharmaceutical Chemistry RCP, Kasegaon. R.C.P. KASEGAON

Heterocyclic compounds Ring compounds with elements other than carbon in the ring. The most common elements to appear in heterocyclic compounds are oxygen, nitrogen and sulfur. The saturated heterocycles are similar to the open chain analogues, ethers, amines and sulfides. The aromatic heterocycles are similar to other aromatic compounds. R.C.P. KASEGAON

Heterocyclic Nomenclature R ep l a c eme n t nom e ncl a tu r e ( IU P A C r ecommend e d 1957) Lowest number assigned to the hetero atom with the highest precedence : O > S > N S thiacyclobutane O N H 1-oxa-3-azacyclopentane R.C.P. KASEGAON

Hantzsch-Widman (1888) Sr. No Hetero atom Symbol Prefix 01 Oxygen O Oxa 02 Sulphur S Thia 03 Selenium Se Selena 04 Nitrogen N Aza 05 Phosphorous P Phospha 06 Arsenic As Arsa 07 Antimony Sb Stiba 08 Bismuth Bi Bisma 09 Silicon Si Silia Prefixes Used in Nomenclature of Heterocyclic Compounds R.C.P. KASEGAON

Hantzsch-Widman (1888) Ring No. Ring With Nitrogen Atom Ring Without Nitrogen Atom Unsaturated Saturated Unsaturate d Saturated 3 -irine iridine irene irine 4 ete etidine ete etane 5 -ole olidine ole olane 6 -ine Perhydro in e in ane 7 -epine Perhydro e pine epin epane Suffixes Used in Nomenclature of Heterocyclic Compounds R.C.P. KASEGAON

Nomenclature of Heterocyclic Compounds Name: Prefix + Stem + Suffix In this nomenclature the nomenclature of heterocyclic compounds are assigned by combining ‘prefix’ (that indicate the heteroatom present) with ‘stem’ (that indicate the ring size as well as the saturation and unsaturation in the ring) and ‘suffixes Nomenclature of heterocyclic compound starts with the heteroatom appears first If more than two different hetero atoms are present in any heterocyclic compound the prefixes are listed in Preceding order If there are two or more than two hetero atoms of same types are present in a heterocyclic compound they are indicated by di-, tri- etc. The position of saturated atom is numerically indicated with prefix ‘H - ’ as a part of the name of the ring system The size of a monocyclic ring (three to ten membered rings) is indicated by stem. The common ‘stem’ nomenclature R.C.P. KASEGAON

O S * oxirane ethylene oxide o xa c y c lo p r o p an e * thiirane ethylene sulfide t hi a c y clo p r o p an e N H * aziridine ethylene imine a z a c y cl o p r o p a n e N H N N diazirane N 1 - a zi r i n e O oxaziridine o x a z a c y cl o p r o p a n e You must know the * names R.C.P. KASEGAON

O S N H N N oxetane o xa c y c l o bu t a n e thietane t h i a c y c l o b ut a n e azetidine a z a c y c l o b u t a n e azete a z a c y c l o b u t a d i e ne 1-azetine 1-azacyclobutene R.C.P. KASEGAON

O O * furan oxole o x a c y c l o p e n t a n d i e n e S * thiophene thiole thiacyclopentandiene N H * pyrrole O 1,3-dioxolane 1,3-dioxacyclopentane O * tetrahydrofuran N H * pyrrolidine a z a c y c l o p en t an e R.C.P. KASEGAON

N N N H N N N N H N p y r a z o le N H imidazole 1,2,4-triazole O o x a z o l e N O isooxazole S thiazole R.C.P. KASEGAON

O O O O N H N H H N O 4-hydropyran O O 2-pyrone 4 - p y r o n e * 1,4-dioxane * piperidine piperazine R.C.P. KASEGAON

N N N N N N N O pyridazine pyrimidine pyrazine * pyridine N H * morpholine R.C.P. KASEGAON

6 7 8 5 N 1 2 3 4 6 7 5 N 2 3 4 * quinoline 8 1 * isoquinoline N H * indole R.C.P. KASEGAON

N H aziridine O oxirane O oxirene N H 1 H -azirine Classification of Heterocyclic Compounds 1.Three membered heterocyclic ring R.C.P. KASEGAON

2.FIVE MEMBERED RING WITH ONE HETERO ATOM N H 1 H - p y r r o le S t h i o p h e n e O f u r an R.C.P. KASEGAON

3.FIVE MEMBERED WITH 2 HETERO ATOM N N H 1 H -pyrazole N O isoxazole N S isothiazole A. 1 AND 2 POSITION N N H 1 H -imidazole N O oxazole N S th i a z ol e B. 1 AND 3 POSITION R.C.P. KASEGAON

4.FIVE MEMBERED RING WITH MORE THAN TWO HETERO ATOM N N N H 1 H - 1, 2 ,3 - t r i az o l e N N N H 1 H -1,2,4-triazole N N N H N 1 H -tetrazole N N O 1,2,4-oxadiazole N N S 1,2,4-thiadiazole N N O 1,3,4-oxadiazole R.C.P. KASEGAON

5.SIX MEMBERED RING WITH ONE HETERO ATOM N p y r idin e N H piperidine R.C.P. KASEGAON

6.SIX MEMBERED RING WITH TWO HETERO ATOM N N pyrimidine N N pyrazine N N pyridazine R.C.P. KASEGAON

7.FIVE MEMBERED HETEROCYCLIC RING FUSED WITH BENZENE(BENZFUSED HETEROCYCLE) N H 1 H -indole R.C.P. KASEGAON

8.SIX MEMBERED HETEROCYCLIC RING ATTACHED WITH BENZENE N quinoline N isoquinoline N a c r i d i n e R.C.P. KASEGAON

9. SEVEN MEMBERED RING WIT ONE HETERO ATOM N H N N H AZEPINE DIAZE P INE R.C.P. KASEGAON

10. B EN Z ODI A Z E PINES N N H R.C.P. KASEGAON

Calculation of “n” Huckel Rule: 4n+2 π 1 Double bond gives 2 π electron and hetero atom contains 2 lone pair of electron. Examples of hetero atom N, O,S etc Hence Pyrrole, Furan, Thiophene contains 6 π Huckel rule=4n+2 6 π =4n+2 4n=6-2 4n=4 N=4/4= 1 Hence n=1 Huckel Rule: 4n+2 4(1)+2 Huckel rule = 6 π electron According to Huckel Rule Pyrrole, Furan and thiophene are aromatic because it Cyclic Planner Pressence alternate conjugate double bond Follows huckel rule: means it satisfy 2  , 6 π , 10 π ,14 π ,18 π ,22 π ,26 π , 30 π Aromaticity in Heterocyclic compounds N O fu r a n H py r rol e S th i oph e n e Aromaticity in Heterocyclic compounds R.C.P. KASEGAON

Resonance structure N H N H Resonance of pyrrole N H N H N H O O Resonance of furan O O O S S Resonance of Thiophene S S S R.C.P. KASEGAON

Comparison of Aromaticity Furan is less aromatic / Thiphene is more aromatic The more electro negative atom holds lone pair of electron more tightly. This will reduces delocalization(Aromaticity) Hence more electro negative atom decreases aromaticity and least electro negative increases aromaticity. Oxygen is more electronegative atom and sulphur is less electronegative atom Hence thiophene is more aromatic because of more delocalization, more resonance energy. R.C.P. KASEGAON

Bas i c i ty Furan is more basic and thiophene is least basic or not basic. Furan contains Oxygen and it pulls Lone pair of electron as o x yg en is m o r e el e ct r o ne g a ti v e a t om . H e nc e less delo c ali z a tion o f π electron or lone pair of electron. Electro negativity will localized and it is more basic Thiophene contains sulphur which is less electro negative and it pulls of π electron or lone pair of electron slowly. Hence more delocalization. Hence thiophene is least basic or not basic R.C.P. KASEGAON

Orbital structure of Pyrrole The delocalization of lone pair of nitrogen in pyrrole through conjugation also suggests that the pyrrole molecule should have planar geometry. This is only possible when the orbital's of carbon and nitrogen in pyrrole are sp2- hybridized. The unhybridized p-orbital of nitrogen contains lone pair of electrons. Two sp2- hybridized orbital's of nitrogen atom forms -bond with two carbon atoms of the ring . third sp2- hybridized orbital of nitrogen atom forms -bond with hydrogen atom. Similarly each sp2- hybridized carbon forms two -bonds with neighbouring carbon atoms and one -bond with hydrogen atom R.C.P. KASEGAON

Orbital structure R.C.P. KASEGAON

Orbital structure R.C.P. KASEGAON

Comparison stability and reactivity S t h i op h e ne O f u r a n N H 1 H -p y r ro le Electronegativity order: O>N>S Stability order < < Reactivity order: S thio p h en e O fur a n N H 1 H - py rr ole > > Oxygen has more electro negativity hence they have capacity to pull electron more than N and S Hence furan acquire less resonance stabilization than pyrrole and thiphene Thiphene is stable hence thiphene is very reactive than pyrrole and furan. R.C.P. KASEGAON

CO NTEN T Properties, synthesis, reactions & medicinal uses of… R.C.P. KASEGAON

Properties 1 . Aro m at i ci t y PYRRO LE R.C.P. KASEGAON

Properties 1 . Aro m at i ci t y PYRRO LE R.C.P. KASEGAON

Properties PYRRO LE R.C.P. KASEGAON

Physical properties of Pyrrole Pyrrole is colorless liquid, BP 131°C Rapidly turns brown on exposure to air. Its odour is like chloroform and pyrrole sparingly soluble in water but dissolves in ethanol and ether Chemical properties of Pyrrole Pyrrole is a weak base(pKa=3.4) R.C.P. KASEGAON

Chemical properties of Pyrrole N + HCl N H H Pyrrole is weak base(pKa=3.4) It reacts with dil. HCl to give crystalline hydrochloride reason for basic character is presence of lone pair of electron on nitrogen atom O 2 Polymerisation Brown Resin Cl Pyrrole hydrochloride H Pyrrole Pyrrole is also weak acid(pKa=15). It reacts with KOH to form pyrrole potassium. Reason for acidic character resonance structure shown positive charge on nitrogen because electron density on nitrogen decreases while delocalization of lone pair of electron N + KOH N H P yr r ol e K Pyrrole potassium + H 2 O R.C.P. KASEGAON

Basicity of Pyrrole From experimental studies it is observed that the pKb values of pyrrole, pyridine and Piperidine are ~14, ~8.7 and ~2.7, respectively. Pyrrole is the weakest base among these three heterocyclic bases the lone pair of electron on nitrogen atom exists in the sp2 hybridized orbital of nitrogen and participates in the delocalization, hence does not freely available to cause the basic character of pyrrole. the lone pair of electron on nitrogen atom of pyridine also exists in the sp2 hybridized orbital; however, it does not participate in the delocalization and available freely to cause the basic character. In case of Piperdine, the lone pair of electron of nitrogen atom lies in sp3 hybridized orbital of nitrogen . These electrons are less tightly bonded with nucleus. Therefore, these electrons are readily available for protonation. Thus, piperidine is the strongest base among the three. < < N H 1 H -pyrrole N pyridine N H piperidine R.C.P. KASEGAON

PYRRO LE Synthesis 1. From Acetylene Mixture of Acetylene and ammonia passed over red hot tube CH CH + N H 1 H - py r r o le C H C H Acetylene NH 3 Ammonoia R.C.P. KASEGAON

PYRRO LE Synthesis 2. From Ammonium Mucate Ammonium mucate heated with glycerol at 200°C H O O H H O H H 4 NOOC H COONH 4 O H Ammonium Mucate G l y ce r o l H O H H O H H H H O H H OO C H C OO H O H Mucic acid + 2NH 3 + 4H 2 O + 2CO 2 N H Pyrrole R.C.P. KASEGAON

PYRRO LE Synthesis 3. Succinimide Succinimide heated with Zn Dust C CH 2 H 2 C C N H N H O O H H O H H O Z n S u c c ini m i de (Keto) Su c c ini m ide (Enol) N H P y rr ole + 2ZnO R.C.P. KASEGAON

PYRRO LE Synthesis 4. Succinic dialdehyde (Pal-Knor Synthesis Succinic dialdehyde warmed with ammonia H C CH 2 H 2 C C H O O H H NH 3 Succinic d i a ld e h yd e E N O L N H P y r rol e + 2H 2 O O H H O R.C.P. KASEGAON

+ NH 3 PYRRO LE Synthesis 5. From Furans Mixture of Furan and ammonia passed steam over aluminium oxide catalyst at 480°C-490°C Al 2 O 3 S t e a m + H 2 O O f u r a n N H 1 H - p y r r ole R.C.P. KASEGAON

PYRRO LE Synthesis 6.Paal-Knorr synthesis. 2,5 hexandione heated with Ammonium carbonate to form pyrrole C CH 2 H 2 C C O H H NH 3 O 2,5 hxanedione E NO L N H P y r r ole + 2H 2 O OH H O CH 3 3 H C CH 3 H 3 C CH 3 3 H C R.C.P. KASEGAON

Synthesis 6. Paal-Knorr synthesis PYRRO LE R.C.P. KASEGAON

Synthesis 7. Hantzsch Pyrrole synthesis PYRRO LE R.C.P. KASEGAON

Synthesis 7. Hantzsch Pyrrole synthesis PYRRO LE R.C.P. KASEGAON

Synthesis 8. Knorr synthesis PYRRO LE R.C.P. KASEGAON

Synthesis 8. Knorr synthesis Mechanism PYRRO LE R.C.P. KASEGAON

Reactions 1. Electrophilic substitution PYRRO LE R.C.P. KASEGAON

substitution reaction Reactions 1. Electrophilic substitution Pyrrol e underg o e s electr o ph i l i c at 2 nd position PYRRO LE R.C.P. KASEGAON

Reactions 1. Electrophilic substitution PYRRO LE R.C.P. KASEGAON

Mech a nism CH 3 C O O NO 2 + CH 3 COOH CH 3 O C O + NO 2 Step - I generation of electrophile(NO 2 + ) O O CH 3 C O C CH 3 + HNO 3 Step - -II - Attack of electrophile on C 2 of pyrrole to form resonance stabilised structure N H + NO 2 N H NO 2 + H N H H NO 2 N H H NO 2 Step-III - Deprotonation by acetate anion to form stable pyrrole N H N O 2 + H + O O C CH 3 2 N H Pyrrole N O + CH 3 COOH R.C.P. KASEGAON

Reactions 2. Reduction PYRRO LE R.C.P. KASEGAON

Reactions 3. Reimer Tiemann reaction PYRRO LE R.C.P. KASEGAON

Reactions PYRRO LE R.C.P. KASEGAON

PYRRO LE + CH 3 ONa + CH 2 I 2 N H P y r ro l e + 2NaI + CH 3 COOH N Pyridine Reactions: Ring expansion reaction Pyrrole treated with sodium methoxide and methylene iodide to form pyridine R.C.P. KASEGAON

PYRRO LE + NH 2 OH + C 2 H 5 OH N H P yr r ol e C H C H Reactions: Ring Opening reaction Pyrrole treated with hot ethanolic hydroxyl amine undergo ring opening reaction and to get dioxime of succindialdehyde H 2 C C H 2 NOH NOH Succindialdehyde R.C.P. KASEGAON

Medicinal uses PYRRO LE R.C.P. KASEGAON

Properties 1 . Aro m at i ci t y FU RA N R.C.P. KASEGAON

F u ran Slightly Furan is colorless liquid , bp 32°C with chloroform like smell. soluble in water but soluble in organic solvent It is weak base and form unstable salt with mineral acid. This salt may produce to brown resin or undergo hydrolysis to form succindialdehyde + HCl O Cl O 2 Polymerisation Brown Resin H O O H H Succindialdehyde Furan hydrochloride O F u r an R.C.P. KASEGAON

Properties 1 . Aro m at i ci t y FU RA N R.C.P. KASEGAON

FU RA N Synthesis 1. Paal-Knorr synthesis of furan C C O O 3 CH H 3 C H H -H 2 O O 3 H C CH 3 2,5 Dimethyl furan H + /HCl CH CH R.C.P. KASEGAON

CH CH C C O O 3 CH H 3 C A C I D H C C H C C O H H O 3 CH H 3 C 2 -H O O H 3 C CH 3 H H KETO hexane-2,5-dione ENOL (2 E ,4 E )-hexa-2,4-diene-2,5-diol 2,5 Dimethyl furan FU RA N Synthesis 1. Paal-Knorr synthesis of furan Mechanism: R.C.P. KASEGAON

Synthesis 2 . Feist – Benary Synthesis FU RA N R.C.P. KASEGAON

Synthesis 2. Feist – Benary Synthe s is Mechanism FU RA N CH COOC 2 H 5 C O CH 3 H H C COOC 2 H 5 C H O CH 3 + H C C CH 3 CH 3 O C COOC H 2 5 C H O CH 3 H C C CH 3 C l C H 3 O H COOC 2 H 5 C H H 3 C O H C C CH 3 C l CH 3 H O O C 2 H 5 OOC H 3 C CH 3 CH 3 H C - HCl , H2O H ethyl 2,4,5-trimethylfuran-3-carboxylate ethyl 3-oxobutanoate Cl 3-chlorobutan-2-one R.C.P. KASEGAON

FU RA N Synthesis 3. From carbohydrate Step-I Distillation of CH with Sulphuric acid Step-II: Catalytic Decomposition of furfural in steam H C O H H O H O H H O H O H H H H/H 2 SO 4 O C O H -3H 2 O, -H 2 CaO, steam O f u r a n R.C.P. KASEGAON

FU R AN Synthesis: 4. From Mucic acid:Dry distillation of Mucic acid and heating of to get furan H O H O H H H O H H OO C H CO O H O H Mucic acid Dry Distill -3H2O, -CO2 O Furoic acid O F ur a n -CO 2 COO H R.C.P. KASEGAON

FU R AN O Furoic acid O F u r a n -CO 2 COO H C O F urfu r a l Synthesis: 5. From Oxidation Furfural : Oxidation of furfural with potassium dichromate to give furoic acid and subsequent decarboxylation at 200-300°C O H [O] K 2 Cr 2 O 7 R.C.P. KASEGAON

FU R AN Ag 2 O S t e a m C O Furfural Synthesis: 6. From Decarboxylation Furfural : Decarboxylation of furfural in steam in the presence of silver oxide catalyst O H O f u r a n + C O R.C.P. KASEGAON

FU R AN Synthesis: 7. From Succinic dialdehyde : Pal-Knor synthesis Dehydration of succinic dialdehyde by heating with P 2 O 5 H C CH 2 H 2 C C H O O O H H P 2 O 5 Succinic di a ld e hyd e E N O L F ur an + H 2 O O H H O R.C.P. KASEGAON

Reactions 1. Electrophilic substitution furan undergoes electrophilic substitution reaction at 2 nd position FU RA N R.C.P. KASEGAON

Reactions 1. Electrophilic substitution FU RA N R.C.P. KASEGAON

Reactions 1. Electrophilic substitution FU RA N R.C.P. KASEGAON

Reactions 2. Reduction FU RA N R.C.P. KASEGAON

Reactions 3. Diels-Alder reaction FU RA N R.C.P. KASEGAON

Reactions 3. Diels-Alder reaction FU RA N R.C.P. KASEGAON

FU RA N + NH 3 Reactions 4. Pyrrole synthesis Mixture of Furan and ammonia passed steam over aluminium oxide catalyst at 480°C- 490°C Al 2 O 3 S t e a m + H 2 O O f u r a n N H 1 H -pyrrole R.C.P. KASEGAON

FU RA N Reactions 5. Ring Opening reaction When furan treated with methanol and HCl,Furan undergoes ring opening reaction to form diacetal succindialdehyde C CH 2 H 2 C C O O O Diacetyl Succinic dialdehyde F u r a n 3 + + 2 CH OH 2 HCl H 3 CO O C H 3 R.C.P. KASEGAON

Medicinal uses FU RA N R.C.P. KASEGAON

Properties 1 . Aro m at i ci t y TH IOPH EN E R.C.P. KASEGAON

TH IOPH EN E Thiophene is a colorless liquid, bp 84°C it is insoluble in water. Thioph e n e doe s no t s how s any basi c propert i e s . It more stable to acid than pyrrole or furan. Thiophene does not undergo Diels – Alder reaction R.C.P. KASEGAON

Properties 1 . Aro m at i ci t y TH IOPH EN E R.C.P. KASEGAON

Properties 1 . Aro m at i ci t y TH IOPH EN E R.C.P. KASEGAON

Synthesis 1. Paal-Knorr synthesis of thiophene TH IOPH EN E R.C.P. KASEGAON

Synthesis 1. Paal-Knorr synthesis of furan Mechanism TH IOPH EN E R.C.P. KASEGAON

Mech a nism CH CH C O O C 3 CH H 3 C A C I D H C C H C C O H H O 3 CH H 3 C 2 -H O S H 3 C CH 3 H H KETO hexane-2,5-dione ENOL (2 E ,4 E )-hexa-2,4-diene-2,5-diol 2,5 Dimethyl Thiphene P 2 S 5 R.C.P. KASEGAON

Synthesis 2. From sod. succinate TH IOPH EN E R.C.P. KASEGAON

Synthesis 3 . Hinsb e r g Synthesis TH IOPH EN E R.C.P. KASEGAON

THIOPHENE 4. From Acetylene: Mixture of acetylene and hydrogen sulphide passed over aluminium oxide at 400°C C H C H C H C H S + Acetylene Hydrogen sulphide H H S thiophene Al 2 O 3 R.C.P. KASEGAON

THIOPHENE 5. From Furoic acid: Distillation of furoic acid with barium sulfide. O C OH + B a S + BaCO 3 O Furoic acid S T h ioph e ne R.C.P. KASEGAON

THIOPHENE 6. From n-butane: Reaction of n-butane with sulphur in the gas phase at 650°C. + 4 S 650° c H 2 C CH 2 CH 3 CH 3 n- Butane S T h i oph e n e + 3H 2 S R.C.P. KASEGAON

Reactions 1. Electrophilic substitution thiophene undergoes electrophilic substitution reaction at 2 nd position TH IOPH EN E R.C.P. KASEGAON

Reactions 1. Electrophilic substitution TH IOPH EN E R.C.P. KASEGAON

Reactions 1. Electrophilic substitution TH IOPH EN E R.C.P. KASEGAON

Reactions 2. Reduction TH IOPH EN E R.C.P. KASEGAON

Reactions 3. Reaction with organo lithium TH IOPH EN E R.C.P. KASEGAON

Medicinal uses TH IOPH EN E R.C.P. KASEGAON

Medicinal uses TH IOPH EN E R.C.P. KASEGAON