Universidad técnica de Machala FACULTAD DE CIENCIAS EMPRESARIALES ESCUELA DE CONTABILIDAD Y AUDITORIA
GRUPO DE TRABAJO INTEGRANTES Ruth Gómez Joselyn Paccha Jazmín Sánchez Mayra Vizcaíno
LA HIPÈRBOLA Lugar geométrico de los puntos tales: Diferencia de sus distancias Dos puntos fijos (Focos) La gráfica de la hipérbola tiene dos ramales desconectados que se ven similares a las parábolas. Cada ramal se acerca en asíntotas diagonales.
ELEMENTOS DE LA HIPÈRBOLA Focos Son los puntos fijos F y F'. Eje focal Es la recta que pasa por los focos. Eje Transverso Es el segmento AA´ y su longitud es 2a. Centro Es el punto de intersección de los ejes. Vértices Los puntos A y A' son los puntos de intersección de la hipérbola con el eje focal. Los puntos B y B' se obtienen como intersección del eje imaginario con la circunferencia que tiene por centro uno de los vértices y de radio c.
ELEMENTOS DE LA HIPÈRBOLA Eje Conjugado Es el segmento BB´ y su longitud es 2b. Lado Recto Es la línea perpendicular que pasa por eje focal.
ELEMENTOS DE LA HIPÈRBOLA Asíntotas Recta a las que la curva se acerca cada vez más en los extremos sin tener intersección.
ELEMENTOS DE LA HIPÈRBOLA Radios vectores Son los segmentos que van desde un punto de la hipérbola a los focos: PF y PF'. Distancia focal Es el segmento de longitud 2c. Eje mayor Es el segmento de longitud 2a. Eje menor Es el segmento de longitud 2b.
EJE focal “X”
RELACIÒN ENTRE LOS SEMIEJES
ECUACIONES DE LA HIPÈRBOLA Ecuación de una hipérbola con centro en el origen de coordenadas y ecuación de la hipérbola en su forma canónica. Ecuación de una hipérbola con centro en el punto
Ejemplos: a) b) Si el semieje transverso a se encuentra en el eje x , y el semieje conjugado b , en el eje y , entonces la hipérbola es horizontal; si es al revés, es vertical. La excentricidad de una hipérbola siempre es mayor que uno.
Dos hipérbolas y sus asíntotas . Hipérbola abierta de derecha a izquierda: Hipérbola abierta de arriba a abajo: Hipérbola abierta de noreste a suroeste: Hipérbola abierta de noroeste a sureste:
Fórmulas de la ecuación de la Hipérbola Ecuación de la hipérbola con los focos en el eje X Excentricidad Asíntota Ecuación reducida de la hipérbola F '(-c,0) y F(c,0)
Ecuación de la hipérbola con los focos en el eje Y Excentricidad Asíntota Ecuación reducida de la hipérbola F'(0, -c) y F(0, c) Fórmulas de la ecuación de la Hipérbola
Ecuación de la hipérbola con eje paralelo a X , y centro distinto al origen Donde A y B tienen signos opuestos . Ecuación de la hipérbola con eje paralelo a Y , y centro distinto al origen
EJERCICIOS 1. Dada la hipérbola cuya ecuación viene dada por: Determine: coordenadas de los focos, de los vértices, ecuaciones de las asíntotas. Trazar la gráfica. Con estos datos, se tiene: F(0, 4), F’(0, -4), V 1 (0, 3) y V 2 (0, -3).
Ecuaciones de las asíntotas: 2. Una hipérbola cuyo centro es el punto C(2, 3) , tiene sus focos sobre la recta y = 3 . Además, la distancia entre los focos es 10 y la distancia entre sus vértices es 8. Trazar la gráfica y determine: coordenadas de los vértices, focos y ecuaciones de las asíntotas. Como la distancia entre los vértices es 8, a = 4 . Igualmente, como 2c = 10 , c = 5 y por lo tanto b 2 = c 2 – a 2 = 9 . Asi que b = 3
Las coordenadas de los focos son: y y = 3 . Esto es: F(7, 3) y F’(-3, 3) . Igualmente, las coordenadas de los vértices son: y y = 3. Esto es, V 1 (6, 3) y V 2 (-2, 3). Además, de la ecuación: se deduce que: son las ecuaciones de las asíntotas