41Revista Brasileira de Nutrição Clínica Funcional - ano 14, n? 61, 2014
ÍRCRGNóUOQN?IONQFCOÖUPNOÖCGFQUJQTO?ÖOQUNQÖVTCTTGIPNCV?TOQUÖCJQOGQUVCUGINON?OONC
Referências
1. VERBERNE, A.J.; SABETGHADAM, A.; KORIM, W.S. Neural pathways that control the glucose counterregulatory response.
Front Neurosci; 26 (8): 38, 2014.
2. KLOVER, P.J.; MOONEY, R.A. Hepatocytes: critical for glucose homeostasis. Int J Biochem Cell Biol; 36 (5): 753-8, 2004.
3. GERICH, J.E.; MEYER, C.; WOERLE, H.J. et al. Renal gluconeogenesis: its importance in human glucose homeostasis. Diabetes
Care; 24 (2): 382-91, 2001.
4. DEFRONZO, R.A.; FERRANNINI, E. Regulation of hepatic glucose metabolism in humans. Diabetes Metab Rev; 3 (2): 415-59,
1987.
5. GERICH, J.E. Control of glycaemia. Baillieres Clin Endocrinol Metab; 7 (3): 551-86, 1993.
6. SPRAGUE, J.E.; ARBELÁEZ, A.M. Glucose counterregulatory responses to hypoglycemia. Pediatr Endocrinol Rev; 9 (1): 463-
73; quiz 474-5, 2011.
7. HASSAN, H.R.; BOURRON, O.; HAJDUCH, E. Defect of insulin signal in peripheral tissues: Important role of ceramide. World
J Diabetes; 15; 5 (3): 244-57, 2014.
8. XIU, F.; STANOJCIC, M.; DIAO, L. et al. Stress hyperglycemia, insulin treatment, and innate immune cells. Int J Endocrinol;
2014: 486403, 2014.
9. YAN, L. J. Pathogenesis of chronic hyperglycemia: from reductive stress to oxidative stress. J Diabetes Res; 2014: 137919, 2014.
10. CAO, Z.; WANG, X. The endocrine role between β cells and intra-islet endothelial cells [Review]. Endocr J; 61 (7): 647-54, 2014.
11. WANG, X.; MELOCHE, M.; VERCHERE, C. B. et al. Improving islet engraftment by gene therapy. J Transplant; 2011: 594851,
2011.
12. LEONI, L. ROMAN, B. B. MR imaging of pancreatic islets: tracking isolation, transplantation and function. Curr Pharm Des;
16 (14): 1582-94, 2010.
13. KONSTANTINOVA, I.; LAMMERT, E. Microvascular development: learning from pancreatic islets. Bioessays; 26 (10): 1069-
75, 2004.
14. OLSSON, R; CARLSSON, P.O. The pancreatic islet endothelial cell: emerging roles in islet function and disease. Int J Biochem
Cell Biol; 38 (5-6): 710-4, 2006.
15. KAHN, B.B.; FLIER, J.S. Obesity and insulin resistance. J Clin Invest; 106 (4): 473-81, 2000.
16. FU, Z.; GILBERT, E.R.; LIU, D. Regulation of insulin synthesis and secretion and pancreatic Beta-cell dysfunction in diabetes.
Curr Diabetes Rev; 9 (1): 25-53, 2013.
17. ABEL, J.J. Crystalline Insulin. Proc Natl Acad Sci U S A; 12 (2): 132-6, 1926.
18. BLUNDELL, T.L.; CUTFIELD, J.F.; DODSON, E.J. et al. The crystal structure of rhombohedral 2-zinc insulin. Cold Spring Harb
Symp Quant Biol; 36: 233-41, 1972.
19. PITTMAN, I.; PHILIPSON, L.; STEINER, D. Insulin biosynthesis, secretion, structure, and structure-activity relationships.
Disponível em: http://diabetesmanager.pbworks.com/w/page/17680216/Insulin%20Biosynthesis,%20Secretion,%20
Structure,%20and%20Structure-Activity%20Relationships. Acesso em: 10/08/2014.
20. SMITH, G.D.; PANGBORN, W.A.; BLESSING, R.H. The structure of T6 human insulin at 1.0 A resolution. Acta Crystallogr D
Biol Crystallogr; 59 (Pt 3): 474-82, 2003.
21. FU, Z.; GILBERT, E. R.; LIU, D. Regulation of Insulin Synthesis and Secretion and Pancreatic Beta-Cell Dysfunction in Diabetes.
Curr Diabetes Rev; 9 (1): 25-53, 2013.
22. EGEA, P.F.; STROUD, R.M.; WALTER, P. Targeting proteins to membranes: structure of the signal recognition particle. Curr
Opin Struct Biol; 15 (2): 213-20, 2005.
23. CHAN, S.J.; KEIM, P.; STEINER, D.F. Cell-free synthesis of rat preproinsulins: characterization and partial amino acid sequence
trabalho poderá ser uma revisão das estratégias
nutricionais e fitoterápicas que estimulem ou
inibam pontos estratégicos da síntese e secreção de
insulina e hormônios contrarregulatórios, na busca
da manutenção destes processos e consequente
garantia da homeostase glicêmica.