Normal Hemoglobin Structure
Hemoglobin A is a tetramer composed of 4 subunits: –
2α and 2β.
Each subunit has a porphyrin ring which holds an iron molecule.
This is the binding site of oxygen site of oxygen Hemoglobin tetramer.
The structure of hemoglobin is highly complex and can be viewed at four levels.
1 The primary structure : sequence of the amino acids in the polypeptide chain
which constitutes the globin chain.
2 The secondary structure : arrangement of the polypeptide globin chains into α
helices separated by non-helical turns;
70–80%of the amino acid residues of hemoglobin form part of the helices.
3. The tertiary structure :
Arrangement of the coiled globin chain into a three-dimensional
structure.
Surface haem-containing pocket between the E and F helices;
Binding of haembetween two specific histidineresidues in the E and
F helices respectively
4 .The quaternary structure:
Relationship between the four globin chains, which is not fixed.
Strong α 1β 1 and α 2β 2 bonds (dimericbonds) hold the molecule
together in a stable form, while the α β 2and α 2β 1 bonds
(tetramericbonds) both contribute to stability, permit the chains to
slide on each other and rotate.
Alteration in the quaternary structure of hemoglobin is responsible
for the sigmoid oxygen dissociation curve.
Alteration in the quaternary structure of hemoglobin is responsible for the sigmoid
oxygen dissociation curve.
the Bohr effect and the variation of oxygen affinity consequent on interaction
with2,3-DPG
Contacts between like chains,α1α 2 andβ 1β2, are also of physiological
significance.
The interaction between the four globin chains is such : oxygenation of one haem
group alters the shape of the molecule in such a way that oxygenation of other
haemgroups becomes more likely.
This is known as cooperativityand is reflected in the shape of the oxygen
dissociation curve.
It is consequent on the fact in the deoxygenated state, the Fe2+ atom is out of the
plane of the porphyrinring of haem.
Oxygenation of Fe2+ causes it to move into the plane of the porphyrin
ring .
Because of the link between haemand the histidineresidues of globin, there is
an alteration in the tertiary structure of that haemoglobinMonomer
This, in turn, causes the oxygenated monomer to alter its position in relation to
other haemoglobinmonomers, i.e. the quaternary structure of the haemoglobin
molecule is altered
Other Hemoglobins in normal adults
HbA2: –
Decreased in iron deficiency,
alpha-thalassemia
Elevated in megaloblasticanemia,
hyperthyroidism
Beta-thalassemia
HbF: –
Elevated in HPF: Sickle cell anemia (preferential survival of RBCs because
HgFinhibits sickling),
Beta thalassemia major
Normal levels in Beta-thalassemia minor
Normal or mildly elevated in congenital hemolytic Anemia
Marked elevation in juvenile CML (up to 70%)
Hemoglobin Abnormalities
There are 3 main categories of inherited Hemoglobin
abnormalities
–Structural or qualitative: The amino acid sequence is altered
because of incorrect DNA code(Hemoglobinopathy).
Quantitative: Production of one or more globin chains is reduced
or absent (Thalassemia).
Hereditary persistence of Fetal Hemoglobin(HPFH): Complete or
partial failure of γγ globin to switch to β globin.
Abnormal Hemoglobin
Reasons to suspect a hemoglobin disorder: –
Patient presents with suspicious history or physical exam
Laboratory tests: Microcytic hypochromic RBCs,
hemolytic anemia
Screening test abnormality (primarily in neonates)
Laboratory Methods to evaluate Hemoglobin
Solubility test :Test to identify HbS.
Solubility test : –Test to identify HbS.
HbSis relatively insoluble compared to other Hemoglobins.
Add reducing agent –It will precipitate forming an opaque solution and
compared with the clear pink solution seen in HbSis not present.
Electrophoresis:
Alkaline (Cellulose Acetate) pH 8.6:
All Hemoglobin molecules have a negative charge, and migrate
towards the anode proportional to their net negative charge.
Amino acid substitutions in hemoglobin variants alter net
charge and mobility.
Acid(Citrate Agar ) pH 6.2
Hemoglobin molecules separate based on charge differences
and their ability to combine with the agar.
Used to differentiate Hemoglobin variants that migrate together
on the cellulose gel (i.e. HbSfrom HbDand HbG,
HbCfrom HbE)
High-Performance Liquid
Chromatography( HPLC)–
Weak cationexchange column.
The ionic strength of the eluting solution is gradually increased solution is
and causes the various Hemoglobin molecules to have a particular
retention .
Amino acid substitutions will alter the retention time relative to HbA.
There is some analogy between retention time and pattern on alkaline
electrophoresis.
INTRODUCTION
HPLC is a form of liquid chromatography used to separate components that are
dissolved in solution.
HPLC instruments consist of a reservoir of mobile phase, a pump, an injector, a
separation column, and a director.
Compounds are separated by injecting a sample mixture onto the column.
The different components in the mixture pass through the column at differentiates
due to differences in their partition behavior between the mobile phase and the
stationary phase.
What is HPLC?
HPLC is a separation technique that involves:
the injection of a small volume of liquid sample into a tube packed with tiny particles (3
to 5 micron ( μm) in diameter called the (stationary phase)
where individual components of the sample are moved down the packed tube (column)
with a liquid (mobile phase) forced through the column by high pressure delivered by a
pump.
These components are separated from one another by the column packing that involves
various chemical and/or physical interactions between their molecules and the packing
particles.
These separated components are detected at the exit of this tube (column) by a flow-
through device (detector) that measures their amount. An output from this detector is
called a “liquid chromatogram”.
1 -Flat baseline –
The baseline should be properly
constructed
2 -Peak profile & shape –
Peaks should appear sharp and
symmetrical
3 –Order of peaks –
The peaks should follow the
order F, P2, P3, Ao, A
2
4 -Total peak area
Should be 1 to 3 million
5 –Hb A
2and Hb F response-
The new calibration factor
should be –0.7 to 1.3
6 -Hb A
2 retention time –
The retention time of Hb A
2
for the calibrator should be 3.65 +0.1
Checkpoints in the calibrator
1
4
3
2
6
5
Interpretation of chromatograms
Flat baseline
Total peak area
HbA
2retention time
Peak profile & shape
Review the CBC data and Interpret result in conjunction with CBC
Consider ethnic origin
Related clinical information
Examine the relative percentages of the hemoglobin fractions found
Determine whether a variant is present
Consider the possibility of more than one hemoglobinopathybeing present
Look for the following :
F –Less than 2%
P2 –changes with the glycemic status,
upto 6 % acceptable
P3 –upto 6 % acceptable ,
A0 –non glycated fraction of Adult
hemoglobin
A
2–normal range 2 to 4 %
Most common Hemoglobin
abnormalities
•Thalassemias–
•Alpha
•Beta
•Hemoglobinopathies–
•HbS trait; disease
•HbC trait; disease –
•HbE
•Hereditary Persistence of Hemoglobin F(HPHF)
Approach for Reporting
ReportingProtocol for Abnormal Hemoglobin study by HPLC
(Beta2 variant Programme-Biorad)
Although a cut off of >4.0% of HbA2 is recommended for identifying b-
thalassemia carriers, each laboratory needs to establish their own normal
ranges.
Also some cases of silent b-thalassemia can have HbA2 between 3.6 to 3.9%
Blood transfusion within 3 months will have dilutionaleffect & false low
HbA2 & HbF
Coexisting Iron deficiency tends to decrease HbA2 & cause microcytosis
Coexisting Folate & B12 deficiency tend to falsely elevate HbA2 levels
Some hemoglobinsco-elute in the HbA2 window like HbE, HbD Iran, HbG
Copenhagen, HbLeporeand HbOsuChristianbourgmaking it impossible to
quantitate HbA2 in the presence of these hemoglobins
Look for the following :
Typical thalassemia carriers
Hypochromic, Microcytic blood film
Hb A
2> 4.0 %
Hb F < 2.0%
( in some cases Hb F may also be elevated )
BETA THALASSEMIA TRAIT
Phenotype: Normal or mildly Anemic.
Ethnicity: Prevalence in Indian population is around is 3%.
Much higher in Gujrat, Hryanaand Eastern U.P.
Pathophysiology: molecular defect cause absence or reduced
synthesis of βglobin chain leading to
Ineffective erythropoiesis
Mild reduction in Hemoglobin(9-11 g /dl )
Lab findings: Marked Anisopoikiliocytosis
Target cell, basophilic stippling
polychromasia.
MCV<80 fl
MCHC<27 pg
Reduced MCHC
Reduced RDW
First evaluate age and transfusion history
If transfusion is involved
report with parental screening
If transfusion interval is greater than 30-60
days
Look for the following :
Variable degree of anemia
Marked red cell changes
Hb F elevated upto 90%
Reduced Hb A
Normal or elevated Hb A
2
BETA THALASSEMIA INTERMEDIA
Phenotype: Similar.to to Beta Thalassemia Major
Patient may not dependent on regular blood transfusion
for survival.
Ethnicity: Same as Beta Thalassemia Major
Pathophysiology: Variable degree of anemia.
Ineffective erythropoiesis.
Extra medullary hematopoiesis.
Usually appear later than 2 years of age.
Lab findings: Marked Anisopoikiliocytosis
Hypochromiawith mild reticulocytosis.
. MCV,MCH :Markedly Reduced.
Marked Increased Fetal Hemoglobin
Variable Reduction in Hemoglobin A(10-35%)
Major band at HbFregion on Electrophoresis.
First evaluate age and transfusion history
If transfusion is involved
report with parental screening
If no transfusion is involved
Look for the following :
Increased NRBC count
Marked variation in shape and size
Hb F elevated upto 90%
Reduced Hb A
Normal or elevated Hb A
2
BETA THALASSEMIA MAJOR
Phenotype: Severe Anemia
Pathophysiology: Ineffective erythropoiesis.
Extra medullary hematopoiesis.
Iron overload resulting from transfusion.
Increased iron absorption.
Clinical manifestation seen after 6 month of life.
Lab findings: Variable degree of Anemia
Marked Anisopoikilocytosis
Hypochromiawith mild reticulocytosis.
. MCV,MCH :Markedly Reduced.
Marked Increase of Fetal Hemoglobin (>85%)
Marked Reduction in Hemoglobin A (<0.3%)
Major band at HbFregion on Electrophoresis
Hb
(g/dl)
MCV
(fl)
Hb
F
Hb E SEVERITY
Normal 80 -
90
<1%25-35%Asymptomatic
Look for the following :
Hb E elutes in the A
2window
For a Hb E trait :
Hb A
2will be between 25-35%
Hb F will be normal
HbE Heterozygous
Phenotype: Normal
Ethnicity: Most common in South East Asia.
Genotype: B chain mutation in26th position of Glutamic acid with Lysine.
Pathophysiology: HbEmutation partially activates a cryptic splice site in
Exon 1,resulting in a proportion of abnormally spliced mRNA.
Thus less Beta globin chain is synthesized.
Lab findings: Microcytosis( Low MCV)
Hypochromia(Low MCH ).
HbEaround 30%
HbEelutes in HbA2 window.
Hb
(g/dl)
MCV
(fl)
Hb FHb E SEVERITY
10-1265-75>2%>60% Mild
Look for the following :
Hb E elutes in the A
2window
For a Hb E homozygous:
Hb A
2will be between >60%
Hb F will be between 2-10%
These values will be variable from
patient to patient and will also vary if
there is a history of blood transfusion
HbE homozygous
Phenotype: Normal or features of mild hemolytic anemia with
Jaundicand splenomegaly.
Ethnicity: Most common in South East Asia.
Pathophysiology: HbEmutation partially activates a cryptic splice site in Exon
1,resulting in a proportion of abnormally spliced mRNA.
Thus less Beta globin chain is synthesized.
Lab findings: Prominent Microcytosis( Low MCV)
Hypochromia(Low MCH ) with Target cells and leptocytes.
Normal or reduced Hb
Normal reticulocyte count.
HbEaround 85-95%
HbEelutes in HbA2 window
HbF: Mildelyincreased or Normal.
OFT: reduced
Hb
(g/dl)
MCV
(fl)
Hb F Hb E SEVERITY
<10 <70 >10% >50% Severe
Look for the following :
Reduced indices
Hb E elutes in the A
2 window
For a Hb E homozygous:
Hb A
2will be between >50%
Hb F will be between > 10%
These values will be variable from patient to
patient and
will also vary if a history of blood transfusion
is involved
Double Hetrozygous For HbE and
Beta Thalassemia
Phenotype: Severest forms of Beta
Pathophysiology: Ineffective erythropoiesis.
Extra medullary hematopoiesis.
Iron overload resulting from transfusion.
Increased iron absorption.
Clinical manifestation seen after 6 month of life.
Lab findings: Variable degree of Anemia
Marked Anisopoikilocytosis
Hypochromiawith mild reticulocytosis.
. MCV,MCH :Markedly Reduced.
Marked Increase of Fetal Hemoglobin (>85%)
Marked Reduction in Hemoglobin A (<0.3%)
Major band at HbFregion on Electrophoresis
Hb
(g/dl)
MCV
(fl)
Hb A
2
Hb F Hb S SEVERITY
Normal80 -90< 4.0 %<1% 30-40%Asymptomatic
Look for the following :
Normal indices
Hb S elutes in the S window
For a S trait :
Hb A
2will be normal (however due
to the elution of some glycated
Sickle products the A
2may be
elevated in some cases , do not
consider it as a compound
heterozygous case)
Hb F will be normal
Hb S will be between 30-40%
SICKLE CELL HETEROZYGOUS
Phenotype: Clinically asymptomatic except when exposed to low
oxygen tension. Ex: high altitude.
Genotype: Glutamic acid is replaced by Valineat 6
th
position of Beta
chain.
Pathophysiology: When exposed to low oxygen tension, it may lead
to vaso-occulusivecrisis in the patient.
Hematuria and deficient urine concentration ability are most common
associated with renal abnormalities in trait.
Lab findings: NCNC Usuaally..
HbS: Reduced (<30%)
HbA2 may be raised.
Hb
(g/dl)
MCV
(fl)
Hb A
2
Hb F Hb S SEVERITY
<12 70-75< 5 %> 5% >50% Mild
Hb S elutes in the S window
Look for the following :
For a Hb S homozygous:
Hb A
2will be normal
Hb F will be elevated
Hb S will be > 50%
These values will be variable from patient to
patient and will vary if a history of blood
transfusion is involved
HbS HOMOZYGOUS
Phenotype: Chronic hemolytic anemia.
Genotype: Glutamic acid is replaced by Valineat 6
th
position of Beta chain.
Pathophysiology: Tendency to detoxify Hbs. Polymerization Innumerable
Clinical expression of sickling syndromes.
Clinical symptoms: Mild and Severe forms of sickle cell trait
Asymptomatic disorders include HbStrait, double hetrerozygousof HbSwith
HPFH.
Lab findings: Anemia (4-8 g/dl )
NCNC
Sickle cell with Target cells
Reticulocyte count :Raised
In vasso-occularcrisis :Polymorphonuclearleukocytosis
Thrombocytopenia.
HbA2 : slightly raised.
HbF:15-25%
HbS: >50%
Hb
(g/dl)
MCV
(fl)
Hb A
2
Hb FHb SSEVERITY
<10 <70 > 5.0 %> 5%>50% Severe
Hb S elutes in the S window
If transfusion is involved
report with parental screening
Look for the following :
Reduced indices
For a Hb S thalassemia:
Hb A
2will be elevated
Hb F will be elevated
Hb S will be > 50%
These values will be variable from patient
to patient and will vary if there is a history
of blood transfusion
Double Heterozygous for HbS and
Beta Thalassemia
Phenotype: Clinically symptomatic..
Pathophysiology: Clinical resemble Sickle cell Anemia and splenomegaly
persists through adult life.
Lab findings: Microcytic hypochromic
Target cells predominates.
MCV, MCH, MCHC : Decreased with increased RBC count.
HPLC: HbA2 :Elevetaed
HbF:Elevated
HbS>50%
Hb
(g/dl)
MCV
(fl)
Hb A
2
Hb FHb DHb SSEVERITY
</= 1480-90<4% <20%<50%>50% Variable
between
mild to
severe
Look for the following :
Normal or reduced indices
For a Hb S-Hb D disease :
Hb A
2will be normal
Hb F will be elevated
Hb D will be < 50%
Hb S will be < 50%
Double Heterozygous for HbS and HbD
Phenotype: Moderately severe clinical presentation of sickle cell trait.
Ethnicity :Uncommon condition encounter in Punjabis
Higher In Muslims in consanguineous marriage.
Pathophysiology: The Beta 121 glutamine residue increases the polymerization of
HbS.
Lab findings: Mild to moderate Anemia (4-8 g/dl )
Increased Reticulocytosis.
HPLC: Separate peaks of HbDin the “D window” and
HbSin the “S window”.
HbD(<50%)and HbS(<50%)
HbFpeak (10-20%)
Electrophoresis: Single bed on SD region.
Hb
(g/dl)
MCV
(fl)
Hb A
2
Hb F SEVERITY
12-14 80-9010-18%<10% Asymptomatic
Look for the following :
Normal indices
For Hb Lepore trait :
Hb A
2will be 10-18%
Hb F will be normal
The retention time of Hb A
2will be
earlier than normal -3.45 to 3.6mins
HbE LEPORE TRAIT
Phenotype: Features indistinguishable
Genotype: Unequal cross-over during meiosis with deletion of 3
rd
part and 5
th
part of Beta gene leading to formation of Delta Beta
fusion.
Pathophysiology: Features Of Delta Beta Thalassemia.
Three different types of LeporeHemoglobinshave identified.:
1)Hemoglobin LeporeBoston
2)Hemoglobin LeporeHollandia
3)Hemoglobin LeporeBaltimore.
Lab findings: Anemia and Reticulocytosis.
MCV,MCH : Reduced.
Abnormal HbA2:10-18%
Retention time of HbA2 will be earlier than normal
( 3.45-3.6 mins)
Hb
(g/dl)
MCV
(fl)
Hb A
2
Hb F SEVERITY
<12 <75 <4% <3-20 %Asymptomatic
Look for the following :
Reduced indices
For HPFH trait :
Hb A
2will be normal
Hb F will be 3-20%
Additional points
P3 –upto 6 % acceptable ,
–6 to 12 % may indicate sample deterioration
–15 to 25 % indicate Hb J
Iron deficiency –Hb A
2found to be slightlylower
Megaloblastic anemia –Hb A
2found to be higher
Unknown peak
May appear any where in the peak table
More than 1 unknown peak may be seen
Upto 6 % not significant
If, above 6% -look for the RT for Hb identification.