Bibliography T. Lima, B. Fernandes and P. Barros, "Human action recognition with 3D convolutional neural network," 2017 IEEE Latin American Conference on Computational Intelligence (LA-CCI),2017, pp. 1-6, doi : 10.1109/LA-CCI.2017.8285700. Saoudi , E.M., Jaafari , J. and Andaloussi , S.J., 2023. Advancing human action recognition: A hybrid approach using attention-based LSTM and 3D CNN. Scientific African, 21, p.e01796. de la Torre Frade , F., MARTINEZ MARROQUIN, E., SANTAMARIA PEREZ, M.E. and MORAN MORENO, J.A., 1997. Moving object detection and tracking system: a real-time implementation. LeCun, Y. and Bengio, Y., 1995. Convolutional networks for images, speech, and time series. The handbook of brain theory and neural networks, 3361(10), p.1995. Li, Liyuan, Weimin Huang, Irene YH Gu, and Qi Tian. "Foreground object detection from videos containing complex background." In Proceedings of the eleventh ACM international conference on Multimedia, pp. 2-10. 2003. Zhou, Q., 2001. Tracking and classifying moving objects from videos. In Proc. 2nd IEEE Workshop on Performance Evaluation of Tracking and Surveillance, 2001. Pham, H.H., Khoudour , L., Crouzil , A., Zegers , P. and Velastin , S.A., 2022. Video-based human action recognition using deep learning: a review. arXiv preprint arXiv:2208.03775. Yang, C., Mei, F., Zang, T., Tu, J., Jiang, N. and Liu, L., 2023. Human Action Recognition Using Key-Frame Attention-Based LSTM Networks. Electronics, 12(12), p.2622.