hybrid_lecture_4.ppt........................................................................................

VishalSingh1641 165 views 41 slides Sep 22, 2024
Slide 1
Slide 1 of 41
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30
Slide 31
31
Slide 32
32
Slide 33
33
Slide 34
34
Slide 35
35
Slide 36
36
Slide 37
37
Slide 38
38
Slide 39
39
Slide 40
40
Slide 41
41

About This Presentation

........................................................................................................................................................................................


Slide Content

Hybrid Organic-Inorganic, POSS
Materials
Lecture 4 & Quiz
September 28th

Today
First hour:
•Some definitions
•Strategies for making Hybrids
Second hour:
•Quiz
•Discussion of quiz answers

Course website
•For lecture slides and other info.
•Not at HIT website, at Loy research
website:http://www.loyresearchgroup.com/
• Go to loy research group home page and select
“courses” on menu at top.
• Class website “Harbin Institute of Technology,
Hybrid Materials Course” is the first entry.
Direct url:http://www.loyresearchgroup.com/harbin-
institute-technology---hybrid-materials-course.html

What are Hybrid Materials?
Composite materials mixtures of organic and
inorganic components
Improvement on either organic or inorganic components
Metal
oxide
network

Introduction to
polysilsesquioxanes
RSiO
1.5
n
Si
R
Si
Si
R
Si
O
O
O
Si
Si
O
Si
O
R
Si
O
O
O
Si
O
R
OH
O
Si
O
O
SiOR
O
O
R
Si
O
R
Si
O
OH
O
R
O
R
OH
R Si
R
O
O
R
Si
Si
R
HO
Si
OH
R
HO O
OH
R
R
R
n = 17
Si
O
Si Si
O
RR
R
Si
O
O
Si
O
Si Si
O
O
O
O
Si
O
O
O
R
R R
R
R
n = 8
RSiO
1.5
8
R
8Si
8O
12
Network of Si-O-Si
Organic group (alkyl, aryl, alkenyl) attached through Si-C bond
Fully condensed: 1.5 oxygens per Si
Three siloxane bonds per silicon

Where are the organic and inorganic
phases?
Si
R
Si
Si
R
Si
O
O
O
Si
Si
O
Si
O
R
Si
O
O
O
Si
O
R
OH
O
Si
O
O
SiOR
O
O
R
Si
O
R
Si
O
OH
O
R
O
R
OH
R Si
R
O
O
R
Si
Si
R
HO
Si
OH
R
HO O
OH
R
R
R
RSi(OMe)
3
H
2O
catalyst
Si
O
Si Si
O
RR
R
Si
O
O
Si
O
Si Si
O
O
O
O
Si
O
O
O
R
R R
R
Ror
Blue is inorganic
Black is organic
•Segregation only at sub-molecular length scales.
•Hybrid, synergistic properties come from very high surface
area contact between phases

Silsesquioxane
Silicon 1.5
Oxygens
Polysilsesquioxane
Many
RSiO
1.5
n
Many generally means more than 10,000 Dalton Mw

Oligosilsesquioxane
Silicon 1.5
Oxygens
A few
RSiO
1.5
n
Oligo means > 1 and < 50-100 (depends on Mw or R group)
Si
O
Si Si
O
RR
R
Si
O
O
Si
O
Si Si
O
O
O
O
Si
O
O
O
R
R R
R
R
n = 8
RSiO
1.5
8
R
8Si
8O
12

Nomenclature of silsesquioxanes
•Polymers: poly(name of organic-silsesquioxane)
eg. R = Ph or phenyl
poly(phenylsilsesquioxane)
PhSiO
1.5
n

Nomenclature of silsesquioxanes
•oligomers: oligo(name of organic-silsesquioxane)
eg. R = Ph or phenyl
poly(oligosilsesquioxane)
PhSiO
1.5
n

Nomenclature of silsesquioxanes
•Polyhedral oligomers: need to describe size of
rings
eg. R = Ph or phenyl
T
8: n = 8
Si
O
Si Si
O
PhPh
Ph
Si
O
O
Si
O
Si Si
O
O
O
O
Si
O
O
O
Ph
Ph Ph
Ph
Ph
n = 8
PhSiO
1.5
8
Ph
8Si
8O
12
Ph = phenyl
Polyhedral refers to multi-sided geometric shapes like cubes.
1,3,5,7,9,11,13,15-octaphenyl
pentacyclo[9.5.1.13,9.15,15.17,13]octasiloxane
IUPAC Name:

Si
O
Si
Si
O
Si
O
CH
2
CH
2
Si
Si
O
Si
O
O
Si
O
O
O
Si
CH
2
O
CH
2
O
Si
O
O
Si
CH
2
O
O
O
CH
2
Si
CH
2
Si
O
O
CH
2
O
O
O
O
Si
O
O
CH
2
Si
O
Si
Si
O
O
OO
C
H
2
(MeO)
3
SiCH
2
Si(OMe)
3
(MeO)
3
Si Si(OMe)
3
(MeO)
3Si Si(OMe)
3
HH
+ 3n H
2
O
-6 n MeOHn
O
1.5Si SiO
1.5
n
or
or
or
Si Si
n
O
O
O
or
Drawing bridged polysilsesquioxane structures:
Fully condensed: 1.5 oxygens per Si.
Methylene-bridged polysilsesquioxane

bridged polysilsesquioxane nomenclature:
Methylene-bridged polysilsesquioxane
Si
O
Si
Si
O
Si
O
CH
2
CH
2
Si
Si
O
Si
O
O
Si
O
O
O
Si
CH
2
O
CH
2
O
Si
O
O
Si
CH
2
O
O
O
CH
2
Si
CH
2
Si
O
O
CH
2
O
O
O
O
Si
O
O
CH
2
Si
O
Si
Si
O
O
OO
C
H
2
O
1.5Si SiO
1.5
n
or
Si Si
n
O
O
O
or
Not “methane-bridged”
Not “methano-bridged”
Not “methano-silica”
Not “methylene modified silicate”
These are not silicas
These are not silicates

Different ways to put hybrids together
Class 1: No covalent bonds between inorganic and organic phases
Class 2: Covalent bonds between inorganic and organic phases
Example: particle filled polymer
Monomers in solvent Gel or dry gel (xerogel)
Close-up of hybrid
particle

In practice, how do you make these
hybrids?
Inorganic Organic
Physical mixing
Colloidal dispersion
Aggregation or coalescence
Class 1:Try to use high viscosity of polymer to hinder aggregation
Class 2: Use covalent bonds to prevent aggregation of phases
Like oil and water

Making Hybrid Materials: Class 1A
(pre-formed particles and fibers)
Pre-formed Particles
Polymers
Si
O
Si Si
O
RR
R
Si
O
OSi
O
Si Si
O
O
O
O
Si
O
O
O
R
R R
R
R
=
or SiO
2
or MO
x
or O
1.5Si-R-SiO
1.5
or R-SiO
1.5
or
Physical mixing of particles in melt
or solution
Easiest hybrid to make

Inorganic Phases
Metal Oxide Networks
Organically modified Metal Oxide Networks

Inorganic Phases
Silica Particles
Preformed inorganic clusters
Ti
12O
16(OPr
i
)
16 Ti
17
O
24
(OPr
i
)
20
Ti
18
O
22
(OBu
n
)
26
(Acac)
2
Ti(OR)
4-x
(acac)
x
POSS

Making silsesquioxanes as
inorganic phase
Si
R
Si
Si
R
Si
O
O
O
Si
Si
O
Si
O
R
Si
O
O
O
Si
O
R
OH
O
Si
O
O
SiOR
O
O
R
Si
O
R
Si
O
OH
O
R
O
R
OH
R Si
R
O
O
R
Si
Si
R
HO
Si
OH
R
HO O
OH
R
R
R
RSi(OMe)
3
H
2O
catalyst
Si
O
Si Si
O
RR
R
Si
O
O
Si
O
Si Si
O
O
O
O
Si
O
O
O
R
R R
R
Ror
Blue is inorganic Black is organic
Surface modified inorganic

Class 1A: POSS physically dispersed in
polypropylene
Si
OR'
R
OR'
OR'
Si
O
Si Si
O
RR
R
Si
O
O
Si
O
Si Si
O
O
O
O
Si
O
O
O
R
R R
R
R
R"
n
=
POSS

Inorganic Phases
Isolated metal atoms in polymeric
architectures (organometallic polymers)
While formally “inorganic” these behave more like organic

Organic phases: Polymers
Commercially available from Dow, BASF \
or from research chemical vendors: Aldrich or Polyscience

Inorganic Phases
Carbon Buckeyballs, nanotubes
and graphene
Nature Materials 9, 868–871 (2010)
Organic need more
than just carbon:
CHNO

Class 1: No covalent bonds between inorganic
and organic phase (easiest hybrid to prepare)
Example: particle filled polymer
1) First need to prepare or buy inorganic particles
2) then, depending on polymer melting point, mix into
melt or solution of polymer
3) Cool (if melt) or evaporate solvent (if solution)
If you were making this hybrid, what would you be worrying
about? And how would you check experimentally?

Making Hybrid Materials: Class 1B
(in situ particle growth)
Si
OR'
R
OR'
OR'
Si
OR'
R
OR'
OR'
Si
OR'
R'O
R'O
M(OR')
x Si
OR'
R'O
OR'
OR'
No Solvent except for monomer(s)
Generally uses low t
g
organic polymers
or in polymer melts (< 100 °C).
Viscous environment. Confined growth.

Making Hybrid Materials: Class 1B
(in situ particle growth)
CH
3Si(OMe)
3
Melt
LInear polymer
"Inorganic
monomer"
H
2O
tin catalyst
Particles form in situ 10-10000 nm
Polymerize
inorganic
monomer
Grow
inorganic
particles
What must happen for this method to work?

Making Hybrid Materials: Class 1C
(Polymerizing in pores)
•Porous metal oxide
•Liquid monomer (no solvent)
•UV, heat, radiation
R
R
R R
R
R
R
R
R
R
R R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
RR
R
R
R
R
R
R
R
R
R
R
R
catalyst
Non-porous composite material
Same issues as in 1B, but organic polymerization must not be
chemically hindered by metal oxide
What polymerization chemistry is incompatible with silica or
silsesquioxanes? Why?

Making Hybrid Materials: Class 1D
(encapsulation of small organics)
• Polymerize metal oxide around organic
• pores must be small or leakage will
occur
•Solid state dye lasers, filters, colored
glass
catalyst
OOHO
OOHO
O
O
OH
O
O
HO
O
O
HO
H
2O
© Asahi-
Kirin
Describe how the starting materials
must behave for this to work

Ancient Humans also made Hybrid
organic-inorganic materials: Maya
Blue
L. A. Polette, N. Ugarte, M. José Yacamán and R. Chianelli, Sci. Am. Discovering
Archaeology, 2000, July–August, 46
Indigo
+
white clay palygorskite
(Mg,Al)
2Si4O10(OH)·4(H
2O)
(also called Fullers Earth)
Class 1B or Class 1C or Class 1D??

Making Hybrid Materials: Class 1E
(Interpenetrating network)
• Both organic and inorganic phases
grow simultaneously
•Timing is more difficult
• Reproducibility is a challenge
• May need to use crosslinking organic
monomers to ensure solid product
R
R
R
R
R
R
R
R
R
R
R R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
catalystR
R
What does this assume
about the reaction
kinetics?

Making Hybrid Materials: Class 2A
(Covalent links at molecular level)
• Organic group is attached to network
at molecular level
•Hypercrosslinking is possible
•Pendant or bridging monomers
•Bridging groups can be small or
macromolecule
•This class also includes the
organometallic polymers
catalystR
R
R
R
R
R
R
R
R
R
R
R
R R
R
R
RR
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
H
2O
Chromatographic
Materials
Low Dielectrics
Photoresists for
Lithography

Making Hybrid Materials: Class 2B
(Covalent links at polymer level)
• ligands attached to polymer
• Reaction rates slow unless in sol. or
melt
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
RR
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
In Melt
or in solution

excess water
H+, OH- or F-
Making Hybrid Materials: Class 2C
Templating with block copolymers and
surfactants
Self-assembly surfactant into 3-D biphase system then
polymerize in one of the phases (usually in the water
phase)

Making Hybrid Materials: Class 2C
(Templating) Shown here with block
copolymer
O
n m
A B
hydrophobic
polyisoprene
hydrophilic
polethylene oxide
Heat polymer then cool
or cast from solvent

Making Hybrid Materials: Class 2C
(Templating) Shown here with block copolymer
PEO, Al
2O
3 and
RSiO
1.5
polyisoprene
Block copolymer
Block copolymer
Sol-gel system
Multiple phases
created by varying
size of blocks

1. Davis, H. T., Bodet, J. F., Scriven, L. E., Miller, W. G. Physics of
Amphiphilic Layers, 1987, Springer-Verlag, New York
Templating with surfactants:(Class 2C)
• First prepare two
phase surfactant
system

 
Add monomer. Sol-
gel monomers move
into aqueous phase
with hydrolysis

 
Filter precipitate
• remove surfactant
by calcining or
extraction
Many different
phases can be
accessed

Surfactant templating to make
hierarchical materials (Class 2C)

Surfactant templating (Class 2C)
Benzene-silica hybrid material
with 3.8 nm pore diameter
(Inagaki, Nature, 2002).

Classes 2D Covalent coupling agents
Attaching organic group onto inorganic material
O
Si
O
O
Si
O
Si
O
OH
O
O
HO
Si
O
Si
O
Si
O
SiO
SiO
Si
O
Si
O
Si
O
Si
O
Si
O
Si
O
Si
O
O
HO
HO
O
HO
O
HO
OH
HO
O
HO
O
HO
O
OH
O
OH
O
OO
OH
O
HO
OH
Si
Si
Si
Si
Si OHO
O
O
OSi
O
OH
Si
OOH
O
OSi
Si
HO
O
O
Si
O
O
Si
O
SiO
HO
O
O
O
Si
O
Si
O
Si
O
Si
OSi
O
Si
O
Si
O
Si
O
Si
O
Si
O
SiO
SiO
O
HO
HO
O
HO
O
HO
OHOH
O
OH
O
OH
O
OH
O
OH
O
O
O
OH
OHO
OH
Si
Si
Si
Si
Si
Si
OH
O
O
O
O
Si
O
OH
Si
O
OH
O
Si
Si
HO
O
HO
HO
O
O
O
OO O Si(OEt)
3
O
O
O
OH
OH

Classes 2E Covalent coupling agents-
Attaching inorganic group onto organic
polymer
γ hν
Si(OEt)
3
polyethylene
Si(OEt)
3
For tough electrical wire coating
& shrink fit wrap

Summary
•Silsesquioxane nomenclature is hard to
pronounce
•Organosilica is improper nomenclature
•Mixing polymer with anything is hard & may
not work
•Good mixing is necessary for hybrids
•Surfactants can template hierarchical
structures
Tags