IATKI - Electrical Energy Storage, Technology, Lesson Learned & Future Prospect.pptx

HartoyoMp 0 views 74 slides Oct 10, 2025
Slide 1
Slide 1 of 74
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30
Slide 31
31
Slide 32
32
Slide 33
33
Slide 34
34
Slide 35
35
Slide 36
36
Slide 37
37
Slide 38
38
Slide 39
39
Slide 40
40
Slide 41
41
Slide 42
42
Slide 43
43
Slide 44
44
Slide 45
45
Slide 46
46
Slide 47
47
Slide 48
48
Slide 49
49
Slide 50
50
Slide 51
51
Slide 52
52
Slide 53
53
Slide 54
54
Slide 55
55
Slide 56
56
Slide 57
57
Slide 58
58
Slide 59
59
Slide 60
60
Slide 61
61
Slide 62
62
Slide 63
63
Slide 64
64
Slide 65
65
Slide 66
66
Slide 67
67
Slide 68
68
Slide 69
69
Slide 70
70
Slide 71
71
Slide 72
72
Slide 73
73
Slide 74
74

About This Presentation

Teknologi Penyimpanan Bateray


Slide Content

ditemukan

2/3

3/3

depend

Y E A R

C T

= Khususnya di bidang Energi dan Ketenagalistrikan peran Energy
Storage menjadi sangat penting, terutama dalam menuju kepada
Energi yg Zero Carbon a.l. karena menyangkut:

1. Berkembangnya pemanfaatan Energi Terbarukan yang pada
umumnya bersifat intermittent yang pemanfaatannya melalui
grid perlu diantisipasi. Energy Storage salah satu jalan keluar.

2. Berkembangnya mobil listrik, maka diperkirakan juga
perkembangan moda transportasi lain yang menggunakan
listrik. Lihat teknologi drone yang ukurannya semakin besar
yang berpotensi sebagai alat tranportasi udara komersial.

3. Beralihnya sebagian penggunaan energi termal/bahan bakar di
sektor Industri dan Rumah Tangga.

4. Ada satu pilihan teknologi yang berkembang yaitu sistem
energi berbasis Hidrogen yang dihasilkan dari elektrolisa dari
tenaga listrik yang dibangkitkan dari sumber Energi Baru dan
Terbarukan, termasuk untuk pengganti bahan bakar/BBM.
Namun pengembangan energi storage yang mempunyai
kemampuan gabungan sifat Battery dan Superconductor yang
mengakibatkan Energy Storage dapat diisi ratusan ribu kali,
dengan kapasitas tinggi dan dapat diisi dengan cepat dan dapat
discharge secara cepat pula, maka dapat menjadi pilihan lain
terhadap system energi hidrogen atau setidaknya saling
mengisi.

Pemanfaatan Energy Storage dengan teknologi mayu, ne 一

depan akan mengubah cakrawala peran tenaga listrik lebih
luas dalam peradaban manusia: <

Sistem ketenagalistrikan yang menuju kepada pemanfaatan
EBT, utamanya ET yang pada umumnya bersifat intermittent,
diuntungkan dengan pemanfaatan Energy Storage.

Teknologi Enegy Storage berpengaruh besar pada arah
perubahan perkembangan teknologi transportasi.

Teknologi Energy Storage juga akan berpengaruh luas dalam
sistem energy thermal selama ini karena banyak pemanfaatan
bahan bakar yang dapat digantikan dengan tenaga lisfrik.

= Dulu yang bisa disimpan dan ditransportasikan adalah bahan
bakar (BBM, Gas, Batubara), ke depan karena listrik dapat
disimpan maka tenaga listrik tidak hanya dibangkitkan dan
ditransmisikan tapi juga bisa disimpan dan ditransportasikan
untuk memenuhi kebutuhan energi untuk berbagai penggunaan
yang selama ini menggunakan bahan bakar.

"= Namun tetap perlu dipastikan bahwa upaya dan visi ke depan
ini harus didukung dengan REGULASI yang memberi
kemudahan terhadap berkembangnya pemanfaatan teknologi
energy storage di Indonesia tanpa hambatan.

EUN, 6 November 2021

Electrical Energy Storage, Technology, Lesson Learned &
Future Prospect

[ma
BATTERY 8. SUPERCAPACITOR

zoom

. ELECTROCHEMICAL REACTIONS |

!

heterogeneous chemical reactions that involve the transfer of an
electric charge to or from an electrode

ANODIC PROCESS

CATHODIC PROCESS

a stable species is reduced by electron transfer \ a stable species is oxidized by the removal of
(6 ~ from the cathode. electrons into the anode.
+20H
Cu

Electrochemical processes can only occur in a cell consisting
of a cathode, anode and electrolyte
・ Electrons must move from the anode to the cathode + To prevent the accumulation of positive or negative

through an external electrical circuit, and there should be charges in the cell > the amount of reduction at the
a charge transfer mechanism between the two cathode must be = the amount of oxidation at the

electrodes in the cells anode

ELECTROCHEMICAL REACTIONS

FARADAY'S LAW

-1833-

The amount of material produced at an electrode
{or liberated from it) during an electrochemical
reaction is directly proportional to the total
conducted charge or equivalent the
average current multiplied by the total time.

Faradays First Law of Electrolysis states that the
chemical deposition due to the flow of current
through an electrolyte is directly proportional to
the quantity of electricity (coulombs) passed
through it

Faradays second law of electrolysis states that,

when the same quantity of electricity is passed
through several electrolytes, the mass of the
substances deposited are proportional to their
respective chemical equivalent or equivalent
weight

The amount of electric charge that resulted in a conversion 1
chemical equivalent of a substance = Faraday constant > for

conversion of 1 mole of substance j, required electric charge at
ne

If the amount of electric charge consumed at the electrodt
> the number of moles of substance formed / reacting = An, ,

Faraday equation :4m = “2

Specific reaction rate, ui (amount of substance j converted /
unit of time / unit area of electrode) « current density, i:
1 y
ME Sat Var

BATTERY

A device that can convert the chemical energy contained in its active substance into elec
energy DIRECTLY through red-oxide reactions (reactions involving the transfer of electrons
from one material to another through an electrical circuit) > not limited by the Carnot cycle

Each cell consists of 3 main components:
Anode requirements: eff

1. anode: gives electrons to the outer circuit >
oxidized

2. cathode: receives electrons from the outer
circuit > reduced

3. electrolyte = ionic conductor: provides a
medium for the transfer of charge (ions) in the
cell, between the anode & cathode

mode & cathode material requirements: lehtw
Be pea lace eee ea ight Electrolyte requirements: high ionic conductivity, not

reactive to electrodes, resistant to temperature changes,
safe in handling and inexpensive > generally aquatic
solutions; except Li > melted / con-aquatjc salts

high cell voltage & capacity, non-reactive to oth
omponents, low polarization, easy to handle,

relatively inexpen:

TYPES OF BATTERIES
1. Primary Batteries

ㆍ not easy / efficient reload > once used (discharge) immediately discharged

+ "Dry cell the electrolyte is stored with absorbent or separator

・ = a convenient, lightweight, inexpensive resource for portable electrical & electronic devices, lighting,
photography, toys, memory backups, et.

・ advantages: long shelf life, high energy density at low - moderate release rates, light maintenance, easy to
use

2. Secondary Battery = Battery Can Be Reloaded (rechargeable)

+ After discharging the charge can be loaded to its original condition by flowing electric current in the
opposite direction to the discharge current > = electric energy storage device = battery storage =
accumulator

« Secondary battery application categories:

a. energy-storage devices
b. discharged as a primary battery but recharged after use

・ high power density and release rate, fat discharge curve and good performance at low temperatures

+ energy density & secondary battery charge retention <primary battery

・ mechanically rechargeable battery: re-loaced by replacing electrodes that have ‘run out: generally metal
anodes on metal-water batteries

3. Backup Battery

+ Primary type: before activation, key components are separated from other battery components Fano
‘chemical reaction / self-discharge > can be stored for a long time

・ thermal battery: not active before being heated to melt the conductive > solid electrolyte

+ to meet the requirements for very long storage or in harsh environments > cannot be filed with “active”
batteries

・ required to provide high power in a relatively short time, for example for missiles, torpedoes, weapons

CELL OPERATIONS

UNLOADING
flow of electrons and ions when releasing the charge (anode = (-), cathode = (+) )
・ ifanode = Zn & cathode = Cl,

anodic reaction 7n > Zn + 2e
Cathodic reaction Ch + 2e > 2 다
Total Zn + Cl, > Zach,

LOADING

ㆍ during reload,
Anodic : 201 > CL, + 2e

electron flow and electric current reversed from the time of release > anode =
(+), cathode = (-)
Cathodic :Zn2 + 2e > Zn

Total 2CH + Zn" (ZnCl) > Zn + Cl,
Example: Ni-Cd cell
discharge:

(: Cd + 20H) > Cd(OH), > anode

(+) : NIOOH + H,0 + er > Ni(OH), + OH > cathode
recharge

(3: Cd(OH), + 2e" > Cd + 2(0H)

(+) : Ni(OH), + OH > NIOOH + H,O + e

Total : 2NiOOH + Cd + 2H,0 = 2Ni(OH), + Cd(OH。

VOLTAGE, CAPACITY &
ENERGY BATTERIES

The voltage and theoretical capacity of a battery depend on the type of anode and cathode matera:
spontaneous reaction > free energy decrease: 400 = —nFE°
= number of electrons involved in a stölchiometric reaction
aradays number = 96500 Coulomb / equivalent = 26.8 Ah / eq
tandard reaction potential

F
go

Theoretical Voltage
+ Standard cell potential depends on the type of active material in the cell
・ Standard cell potential can be calculated from standard free energy data or from the difference in
standard potential of the two electrodes
Ever = Exat — Fan
Ex: Efn = - 0,76V; Ef, = + 1,36 V > Eu = 1,36 - (- 0,76) = 2,12 V
Theoretical Capacity (Coulombic)
+ The theoretical capacity of cells depends on the amount of active ingredients in the cell

+ = total electric charge involved in electrochemical reactions [=] Coulomb or Ampere. hours; Ah capacity
the amount of electrical charge that can be obtained from active ingredients in cells; 1 gram-equivalent

material can produce 96487 Coulomb (26.8 A.hour)

VOLTAGE, CAPACITY & ,
ENERGY BATTERIES

+ The theoretical capacity of an electrochemical cell (based only on active ingredients) can be calculated
from the reactant equivalent weight data, for example:

Zn (0,82 Ah/g) + Cl, (0,76 Ah/g)> ZnCl,
122g/Ah +1,32 g/Ah = 2,54 g/Ah > 0,394 Ah/g
only anode & cathode masses, electrolyte masses etc. are ignored
Tables 1.1 & 1.2 (pages 28 & 29) Linden
・ Theoretical Energy
Theoretical energy = the maximum energy that can be produced by an electrochemical system: energy
(Wh) = potential (V) x capacity (Ah)
example: specific energy (theoretical) Zn/Cl。 = 2,12 V x 0,394 Ah/g = 0,835 Wh/g

SPECIFIC ENERGY & 로
ENERGY DENSITY

In practice, only a portion of theoretical energy can be realized because:

1

there are electrolytes and nonreactive components (containers, separators, etc.) that increase the total
cell weight or volume

2. the discharge of a battery occurs at a <theoretical voltage and ends at a voltage> 0
3. the exact amount of active ingredients in the cell is stoichiometric - there is excess
Fig. 1.4 Linden:

1.
2.

theoretical specific energy (only anode & cathode active ingredients)
Practical battery theoretical specific energy (taking into account electrolytes & nonreactive
components)

actual specific energy if the battery releases the charge at 20 * C under optimal conditions

weight of the battery construction material reduces the theoretical energy density ~ 50% +
the actual energy that a battery can produce is only 50 - 75% of the theoretical energy after being
reduced due to the weight of the construction material

the energy available in a battery that discharges in near optimal conditions, only 25 - 35% of the
theoretical energy

Waïthours/klogram

‘Actual specific
ZZ, Vf ereray

V
y
|

10 2 2

Leclanche Magnesium’ LIMnOz Magnesium’ Nickor Nickel

dycel _ MnO2 cuprous cadmium metall

chloride hydride

Akalne。 2000 Lithium’ Lead Zinc! Lithium:

MnOz 。 mercuric SO acid silver ion
oxide oxide

トーーー Primary ———»|Reserve + — secondary —>|

Energy We

Speo

10990 |
Luthium (Cyr = 18
Znemr
Lithium (Coin MO:
‘Akaline MnO; 7 neu
A 20400
Pal 200 に
Ceeonzme a
oo 500 1000 5000 의 5 0 19 019 020
Energy Density, WhL Spec Energy. Wi
Lihium
Lium lon
Akaino-MnO:
Alkaline: Mos
Pudormanee em
Das 00044 NiCd
Lecianché | |
955 1965 1985 1905 1940 1955 1985 2000
Primary Bateres Secondary Batteries

. THERMODYNAMICS 리

The maximum electrical energy that can be produced from chemicals in the cell depend
‘on the change in free energy of the electrochemical pair, AG
In general it can be written
Cathodic reaction 04 + nec
Anodic reaction :bB=dD + ne
total reaction : aA + bB=cC + dD
Changes in standard free energy: AG’ = -nFE* with F = 96487 Coulombs and E * =
standard electromotive force (emf)
Outside the standard conditions, the cell voltage E is expressed by the Nernst equation
cat
ーー 25
nF ago $

with ai = specific activity i

R = gas constant

T = absolute temperature
AG? = the driving force of a battery to deliver electrical energy to an external circuit D
measurement of emf can also provide data AG, AS, AH, activity coefficient, equilibrium
constant and solubility
Measurement of absolute electrode potential cannot be carried out directly > the
standard potential of the reaction H + / H = 0 Volts and all standard potential half-cell
reactions are compared to hydrogen

TABLE 2.2 Standard Potentials of Electrode Reactions at

Electrode reaction ~ Electrode reaction

e=Li

Battery (Ancient) History

1800
1836
1859
1868
1888
1898
1899
1946
19605

Voltaic pile: silver zinc

Daniell cell: c

Planté: rechargeable le

Leclanché: carbon zinc wet cel
1er: carbon zinc dry cell
Commercial flashlight, D cel
Junger: nickel c
Neumann: sealed NiCd
Alkaline, rechargeable NiCd
Lithium, sealed lead acid
Nickel metal hydride (NiMH)
Lithium ion
Rechargeable alkal
Lithium ion polyme

ZINC-CARBON BATTERIES
(Leclanché and Zinc Chloride Cell System)

・ The most widely used of all primary battery system
+ Low cost, readily available, acceptable performance for many applications
+ In-C battery sales = 34.5% of primary battery global market

For cells with ammonium chloride as the primary electrolyte:
Light discharge: Zn + 2MnO, + 2NH,CI 一 2MnOOH + Zn(NH),Cl,

Heavy discharge: 28 + 2MnO, + NH,Cl + H,O 一 2MnOOH + NH, + Zn(OH)CI
Prolonged discharge: Zn + 6MnOOH — 2Mn,O, + ZnO + 3H,0

For cells with zine chloride as the primary electrolyte:

Light or heavy discharge: Zn + 2MnO, + 2H,0 +ZnCl, 一 2MnOOH + 2Zn(OH)CI
or: 4 Zn + 8MnO, + 9H,O + ZnCl, 一 SMnOOH + ZnCl, +4Zn0-SH,O

Prolonged discharge: Zn + 6MnOOH + 2Zn(OH)CI 一 2Mn,O, + ZnCl,-2Zn0-4H,0

・ Specific capacity: calculated = 224 Ah/kg; with electrolyte, C-black and water mass > 96 Ah/kg; actual
specific capacity = 75 Ah/kg (very light loads) — 35 Ah/kg (heavy-duty)

+ Types : general purpose, industrial heavy duty, extra/super heavy duty

・ Construction : cylindrical, flat

Cosy rec

AR
“|
デー

Leclanche

Leclanche flat cell

CELL COMPONENTS

in = cathode = wet powder mixture of MnO,, carbon black and
electrolyte (NH,CI or ZnCl, and water
Manganese Dioxide
Carbon black
Electrolyte : NH,CI+ZnCl; / ZnC Zn-cO| n inhibitor
Corrosion Inhibitor : HgCl,/Hg,Cl, > Cd & Pb > O4/K,Cr,07 > safe
inhibitors

Contacts

Zoom

. PERFORMANCE CHARACTERISTICS 。

y Tine chloride

> Roma oma
Leclanché 7 +

0 8060
Hours of service

Hours of service

+ Temperature Effect

19 exposure

ALKALINE MnO, BATTERY

TABLE 10.1 Major Advantages and Disadvantages
of Cylindrical Alkaline-Manganese Dioxide Batteries
(Compared to Carbon-Zine Batteries)

Advantages Disadvantages,

Higher energy density Higher initial cost
Better service performance:
‘Continuous and intermittent
Low and high rate
Ambient and low temperature
Lower intemal resistance
Longer shelf life
Greater resistance to leakage
Better dimensional stability

TABLE 10.3 Composition of Typical Cathode

omponent Range, % Function

Manganese dioxide 79-90

Carbon 2-10
52% aqueous KOH 7-10

Binding agent 0-1

Reactant

«ctronic conductor
Reactant, ionic conductor
Cathode integrity (optional)

TABLE 10.5 Composition of Typical Alkaline Anode

Component Ra Funetion

Zine powder Reactant, electronic conductor

Reactant, ionic conductor

Electrolyte distribution and immobilization, mix
processability

25-35
04-2
0-2

Inhibitor 0-0.05
Mercury 0-4

suppressor, zine-plating agent

suppressor

uppressor, electronic conductor, discharge|
accelerator, mix processability

METAL SPUR

case

RDS ER

Cathode |

Can and
cathode

Seat

“Er ee 1 |

Separator
assembly

‘Anode

slurry

P
U

Electrolyte 1

Neutral
cover >

Plastic >
seal O

Ng
= 1
o om
‘Shrink | |
ial l
maay |
mare

FIGURE 103 Assembly process for AA-size cylindrical alkaline-manganese dioxide battery. (Courtesy

of Eveready Battery Company.)

2
%

ion gasket

Separator

Coinode

Alkaline
anode can —

FIGURE 104 Cross section of miniature alaline-mangancse dioxide battery:
Carton Zine (From Eveready Batery Engineering Data.)

Voltage, CCV

bist L
O 20 40 ‘60 80 100 120 140 160 180
Hours of service

5 LEAD ACID BATTERY ‘3

Type

Construction

‘Typical applications

SLI (starting, lighting, ignition)

Traction

Vehicular propulsion

‘Submarine

Stationary (including energy-
storage types such as charge
retention, solar photovoltaic,
load leveling)

Portable (see chap. 24)

Flat-pasted plates (option:
maintenance-free construction)

Flat-pasted plates; tubular and
gauntlet plates

Flat-pasted plates; tubular and
‘gauntlet plates; also composite
construction

‘Tubular plates; flat-pasted plates

Planté;* Manchester;* tubular
and gauntlet plates; flat-pasted
plates; circular conical plates

Flat-pasted plates (gelled
electrolyte, electrolyte
absorbed in separator);
spirally wound electrodes;
tubular plates

Automotive, marine, aircraft,
diesel engines in vehicles and
for stationary power

Industrial trucks (material
handling)

Electtic vehicles, golf carts,
hybrid vehicles, mine cars,
personnel carriers

‘Submarines

Standby emergency power
telephone exchange,
uninterruptible power
systems (UPS), load leveling,
signaling

Consumer and instrument

ions: portable tools,

ces, lighting,

emergency lighting, ra

TV, alarm systems

“Now rarely used.

Negative electrode

Positive electrode

Overall reaction

LEAD ACID BATTERY

discharge
Pb =——— Pb 2e

charge

discharge

Pb?* + SO, PbSO,

charge

discharge
PbO, + 4H* + 2e ==

charge

Pb** + 2H,0

discharge

Pb?* + SO, PbSO。

charge

discharge
Pb + PbO, + 2H,SO, ==

charge

2PbSO, + 2H,0

LEAD ACID BATTERY

he 0 DM
FIGURE 2217 Discharge cores of led oi SLI bare, () At various oy ts and pal reg tad pecs pet ¡Gs im
ASC.) At vas high tes and -17.4 1803 ated 70 A 20h rate 25°C Zu

LI-ION BATTERY INDUSTRY

A as H;PO
4
mon | axa » FeSO,

LiOH

A as 0000

Bauxite

aw

‘Nickel ore
containing
Cobalt

A

BATTERY RAW MATERIAL

| er, [mb ao,

eel

Ar x
ca Battery
‘Assembly Assembly
LNCA Le
1 mon {PNA

< paz
AD

ca ay
Assembly Assembly

Battery
=> El
COMPONENT

‘ASSEMBLY ©
PREPARATION. ‘SINGLE CELL ASSEMBLY

FUTURE PROSPECT OF BATTERY MANUFACTURING

producer

5 Investor
ㆍ has 20 nic 1 Tsingshan group (21%
that feed 15 mill 2. CATL (25%)
Pig Iron a year it 3. Hanwa (8 %)
per-year stainless steel mill. 4. Indonesia Morowali Industrial Park (IMIP) (10 %)
5. Jingmen GEM (36 %)

NICKEL PROCESSING
E

Sumitomo

Laterite

hydro
metall

Crushing

flotation

+ grinding - furnace 一 furnace 一

„Man
+ Smeg > An
Dewatering ,
N e
Cake
mate
~ Smeling roasting & 一
~ reduction
1
‘Slag
carbon
cet
latte, Mined sido
10090 precphaten
Eeene Foi
Converting
ng who

+ 그
sta sult slo
recovery

Fronk el, 2011 Exrectve Metalogy of Nickel, Cobalt and Pla Group Merl, Ssovier

Ni(OH),
& co(OH)

Electrowinaing

Solvent

Slow

Pare > Leaching >

Hydrogen

RAW MATERIAL PREPARATION

High Pressure Acid Leaching (HPAL) & Mixed Hydroxide Precipitation (MHP)

SUMITOMO PROCESS

Oe
PES
E er uty

ET

RAW MATERIAL PREPARATION

RAW MATERIAL PREPARATION

Acid Leaching & Precipitation

| … = EME
| ! |
TA -一 | ron | Precision

COMPONENT PREPARATION

COMPONENT PREPARATION

Lead

REG Sane, re cc Lire

COMPONENT PREPARATION

190 Penyamngan dan HO yang,
Pencucon mengandung |

Kalsinasi(T=480°C, tm) dan
Snlenng (T=800°, 10 jam)

도개
Lt jam)

Serbuk Katoda L-FePO4

SN ON TE mern

BATTERY COMPONENT ASSEMBLY

LI-NCA BATTERY MANUFACTURING

‘Active Mater Di
UNDA, | TERE Graphite cMc

E
> 수 =
A as 9 E

Hatimian era, 0:039/cSenco07Ee, 2015.

BATTERY COMPONENT ASSEMBLY

Li-NMC-BATTERY MANUFACTURING

ET

Paste ming

9 +

ia on

09609

BATTERY COMPONENT ASSEMBLY

LFP-BATTERY MANUFACTURING

Condudwe Divent Active Material Binder
Carbon Black Fer, PVOF-NMP PCFNMP

asp Pas dog
mu | 一 ・ oma 099 + Conve
a en! a
Pa Cae Cari
90000 = [a
We | ame 0009 LE
y
= ㆍ case
y
0000 | 。
UPEVECDC re
Sean 8 Wing
forming a ea

Holiman ct a, 101039/¢Sen000786, 201.

SUPERCAPACITOR

・ ELECTROCHEMICAL CAPACITORS ・

CAPACITOR PRINCIPLES

+ A capacitor = a passive component that stores energy in an electrostatic field rather than in chemical form

・ Consists of two parallel electrodes separated by a dielectric

・ Charged by applying a potential difference (voltage) across the electrodes, causes positive and negative charges
to migrate toward the surface of electrodes of opposite polarity > act as a voltage source for a short time

2
c=;

C = capacitance [farads] ; so = permittivity of free space ;
Q = electric charge on each electrode ; €, = dielectric constant;
V = potential difference between electrodes A = electrode surface area

D = distance between electrodes

* WHAT IS SUPERCAPACITOR? =

Capacitor Ultracapacitor

+++ +++
| キキ キキ キキ

VERY FAST VERY FAST
HIGH CYCLE LIFE HIGH CYCLE LIFE
LOW ENERGY MODERATE ENERGY
FILTER/FREQUENCY CONTROL POWER DELIVERY DEVICE

72 (>) (3

Battery

Dielectric Electrolyte A
no © des -

\

Electroactive

¿>

terials

stow
LOW CYCLE LIFE
HIGH ENERGY

ENERGY STORAGE DEVICE

> SUPERCAPACITOR HISTORY *

® NEC

The Electric Double

Layer Capacitor effect Standard Oil of Ohio gave the
was first noticed in by licensing to NEC, marketed the
General Electric product as a “supercapacitor’


1740

1966

1957 1978
Ewald Georg von Kleist Standard Oil of Ohio re-
constructed the first capacitor discovered this effect
In the same year Pieter von
Musschenboek invented the
Leyden Jar. Ben Franklin soon
found out a flat piece of glass
can be used in place of the jar
model.

+ ENERGY STORAGE COMPARISON

Capacitors

01080
pre ae
“Tannen E
ads
BD me
| =
pr nr [ET
Come cies ICO a
MO, AC
pes
・ WOa-
Redox | I 1
に odor eta oe Le
éd +0, oo。 ~
pao "oO, = cow FO,
z EMO, V,0, FeO, PO

TECHNOLOGY COMPARISON

+ APPLICATION CLASSIFICATION -

Dynamic
+ Rapid change of current Electric Rail Pack Wind power plant pitch ‘Small cell applications

+ Rapid change of power in and out Braking Energy Recapture Diesel — systems Digital cameras, AMR, Actuators,
* Rapid change of voltage Burst power Memory beards

ㆍ Wide ambient temperature
fluctuations over the application life

・ High current/power loads

+ High vibration environment

・ Long cycle life requirement

Static

・ Steady operation vs
time

・ Majority of time spent
in charged state

・ Low charge current,
long charge duration

・ DC life critical

ㆍ Self discharge critical TRACTION INDUSTRY CONSUMER

+ SUPERCAPACITOR APPLICATION ・

u d
© 9° MT
SHOT

ACTIVATED
CARBON

‘MULTILAYER
GRAPHENE

MULTIWALL CNT

CPO WASTE TO NANOCARBON ・

e ETES

SUPERCAPACITOR CELL

Coin cell d1,5 cm Single cell 7x4 cm
e

Pouch cell (6 interphase)

Single cell Single cell

supercapacitor 1x1 cm supercapacitor 2x2 cm Pack module supercapacitor (32

coin cell)

CR.CE (%)

DURABILITY TEST

LAB PRODUCT

COMMERCIAL PRODUCT

… Capactance Reiten で CR)
Coulombic ENaencytCE)

EE
Cycle Number
CCD curve lab product , 1000 cycle

°

‘Capac tance Ratenton (ER
0000 Wemncy (CE)

20 7 do So no
Cycle number
CCD curve commercial product, 1000 cycle

After 1000 cycle :
ㆍ CE 100%.
ㆍ CRstable at 92-94%,

BATTERY

SUPERCAPACITOR

+ BALANCER FOR BATTERY HEALTH ・

Cell balancing is oe recmque mur
improves battery life by maximizing
the capacity of a battery pack with
multiple cells in series, ensuring that all of
its energy is available for use. A cell

balancer or regulator is a functionality in
a battery management system that
performs cell balancing often found in
lithium-ion battery packs electric vehicles

and ESS applications.
Without balancing Active balancing Passive balancing

Typically, individual cells of a battery pack have different capacities and are at different SOC levels. Without
redistribution, discharging must stop when the cell with the lowest capacity is empty, even though the other cells are still
not empty. This limits the energy delivering capal

lity of the battery pack.

BALANCER FOR BATTERY HEALTH ㆍ

There are two basic approaches to balancing:
・ Passive balancing drains charge from cells having too much charge and dissipates drained energy as heat.
+ Active balancing moves charge from “high cells” to “low cells," attempting to conserve energy in the battery pack.

PASSIVE BALANCING

CHARGING

During balancing, higher capacity cells undergo a full charge/discharge cycle. Without cell balancing, the cell of the
slowest capacity is a weak point. Cell balancing is one of the core functions of a BMS, along with temperature monitoring,
charging, and other features that help maximize the life of a battery pack.

— ENERGY STORAGE SYSTEM ㆍ

Energy storage system:
Stationnary or on the vehicle

Time t, Time t,
Vehicle 1 is braking Vehicle 2 is accelerating
+ Energy storage system stores the — Energy storage system delivers the energy

braking energy

・ ENERGY STORAGE SYSTEM ・

Energy storage system:
Stationnary or on the vehicle

Time t, Time ty

Vehicle 1 is braking Vehicle 2 is acecelerating

“> Energy storage system stores the ー Energy storage system delivers the energy
braking energy

Application : Time shifted delivery of the stored braking energy for vehicle re-acceleration
Solutions 2 Possible with either stationary or on-vehicle energy storage system
Advantage 。 : Cost savings through reduced primary energy consumption

ㆍ ENERGY STORAGE SYSTEM >

Diesel Engine Cranking by Stadler MITRAC of Bombardier Transport
Supercapacitor module for diesel engine vehicles

= Robust construction with voltage balancing

= Easy to scale up for additional cranking power

* Easy to integrate in existing housing

= Easy to use, maintenance free 1

ㆍ NEC/TOKIN HYBRID SYSTEM .

Circuit operation

Transient waveform during shooting
(Ta=25C, 2 AA-Alkaline Battery)

Without Supercapacitor With Supercapacitor

(80. 10007)

Ite

souoneg ig» 01 z

NEC TOKIN

Supercapacitor is connected in parallel to Dry batte
à dns Operating life (Number of photos)

Without Supercapacitor
With Supercapacitor

* ENERGY STORAGE SYSTEM >

Komatsu hybrid system Fuel Consumption 배 여여

Masi of 41%

25% Reduction

Electric motor for
the turntable of the

Komatsu Hybrid System

・ ENERGY STORAGE SYSTEM ㆍ

Gantry Crane (RTGC)

Hybrid Rubber Tire

Diesel Engine performance comparison
Hybrid System
Komatsu S6D125

204 kw
11.0L
Denyo 08-1651M
220 kVA
21.63 PHr
8.24 Ur
13.39 UHr

ㆍ 7 M Capacitor
ㆍ 38% Fuel Saving / Significant Emission Reduction

‘Furukawa: OLA? every storage tem nutpe 00400 roc Adv Capacor Weld Summit San Digs (2006)

Thank You
Tags