SIM
•MostofthedatacontainedwithintheSIMisprotectedagainstreading
(egKi)oralterationsaftertheSIMisissued.
•Someoftheparameters(eg.LAI)willbecontinouslyupdatedto
reflectthecurrentlocationofthesubscriber.
•TheSIMcardcanbeprotectedbyuseofPersonalIdentityNumber(
PIN)password.
•TheSIMiscapableofstoringadditionalinformationsuchas
accumulatedcallcharges.
G S M
FULL SIZE SIM CARD MINI SIM CARD
NETWORK COMPONENTS
98 XXX 12345
CC
NDC
SN
CC NDC SN
= Country code
= National Destination Code
= Subscriber Number
Mobile Station International Subscribers Dialling Number( MSISDN ) :
•Human identity used to call a MS
•The Mobile Subscriber ISDN (MSISDN) number is the telephone
number of the MS.
•This is the number a calling party dials to reach the subscriber.
•It is used by the land network to route calls toward the MSC.
NETWORK COMPONENTS
MCC MNC MSIN
404 XX 12345..10
MCC
MNC
MSIN
= Mobile Country Code ( 3 Digits )
= Mobile Network Code ( 2 Digits )
= Mobile Subscriber Identity Number
International Mobile Subscribers Identity ( IMSI ) :
•Network Identity Unique to a MS
•The International Mobile Subscriber Identity (IMSI) is the primary
identity of the subscriber within the mobile network and is
permanently assigned to that subscriber.
•The IMSI can be maximum of 15 digits.
NETWORK COMPONENTS
Equipment Identity Register ( EIR )
White List
All Valid
assigned ID’s
Range 1
Range 2
Range n
Black List
Service denied
MS IMEI 1
MS IMEI 2
MS IMEI n
Grey List
Service allowed
but noted
MS IMEI 1
MS IMEI 2
MS IMEI n
EIR
NETWORK COMPONENTS
TAC FAC SNR
6 2 6 1
TAC
FAC
SNR
SP
SP
= Type Approval Code
= Final Assembly Code
= Serial Number
= Spare
InternationalMobileEquipmentIdentity(IMEI):
•IMEIisaserialnumberuniquetoeachmobile
•EachMSisidentifiedbyanInternationalMobilestationEquipment
Identity(IMEI)numberwhichispermanentlystoredintheMobile
Equipment.
•Onrequest,theMSsendsthisnumberoverthesignallingchanneltothe
MSC.
•TheIMEIcanbeusedtoidentifyMSsthatarereportedstolenor
operatingincorrectly.
NETWORK COMPONENTS
MSC BSC BTS12
BTS1
BTS2
BTS4
BTS3BTS11
BTS13 BTS14
BTS5
BTS6
BTS7
BTS8
BTS9
BTS11
Open ended Daisy Chain
Daisy Chain with
a fork. Fork has a
return loop back
to the chain
Star
Daisy Chain with
a fork. Fork has a
return loop back
to the chain
BTS Connectivity
NETWORK COMPONENTS
•TheOMCcontrolsandmonitorstheNetworkelementswithina
region.
•TheOMCalsomonitorsthequalityofservicebeingprovidedbythe
Network.
•ThefollowingarethemainfunctionsperformedbytheOMC-R
–TheOMCallowsnetworkdevicestobemanuallyremovedforor
restoredtoservice.Thestatusofnetworkdevicescanbe
checkedfromtheOMCandtestsanddiagnosticsinvoked.
–ThealarmsgeneratedbytheNetworkelementsarereported
andloggedattheOMC.TheOMC-REngineercanmonitorand
analysethesealarmsandtakeappropriateactionlikeinforming
themaintenancepersonal.
–TheOMCkeepsoncollectingandaccumulatingtrafficstatistics
fromthenetworkelementsforanalysis.
–Softwareloadscanbedownloadedtonetworkelementsor
uploadedtotheOMC.
Operation And Maintenance Centre For Radio (OMC-R)
NETWORK COMPONENTS
Operation And Maintenance Centre For Radio (OMC-R)
NETWORK COMPONENTS
•BSIC allows a mobile station to distinguish between neighboring base
stations.
•It is made up of 8 bits.
NCC = National Colour Code( Differs from operator to operator )
BCC = Base Station Colour Code, identifies the base station to help
distinguish between Cell’s using the same BCCH frequencies
Base Station Identity Code
BCC00 BCCNCC
7 6 5 4 3 2 1 0
NETWORK COMPONENTS
MOBILE MAXIMUM RANGE
RANGE=
TIMING ADVANCE = DELAY OF BITS (0-63)
BIT PERIOD= 577/156.25 = 3.693sec =3.693 * 10e-6 sec
VELOCITY= 3 * 10e5 Km/sec
RANGE= 34.9 Km
TIMIMG ADVANCE * BIT PERIOD* VELOCITY
2
INTERFACE NAMES
Each interface specified in GSM has a name associated with it.
NAME INTERFACE
Um MS -----BTS
Abis BTS -----BSC
A MSC ------BSC
B MSC ------VLR
C MSC ------HLR
D VLR -----HLR
E MSC ------MSC
F MSC ------EIR
G VLR ------VLR
H HLR ------AUC
Cell Global Identity ( CGI ) :
MCC
MNC
LAC
CI
MCC MNC LAC CI
LAI
CGI
= Mobile Country Code
= Mobile Network Code
= Location Area Identity
= Cell Identity
GSM Control Channels
BCH ( Broadcast channels)
Downlink only
Control Channels
DCCH(Dedicated Channels)
Downlink & Uplink
CCCH(Common Control Chan)
Downlink & Uplink
Synch.
Channels
RACH
Random
Access Channel
CBCH
Cell Broadcast
Channel
SDCCH
Standalone
dedicated
control channel
ACCH
Associated
Control Channels
SACCH
Slow associated
Control Channel
FACCH
Fast Associated
Control Channel
PCH/
AGCH
Paging/Access grant
FCCH
Frequency
Correction channel
SCH
Synchronisation
channel
BCCH
Broadcast
control channel
CHANNEL CONCEPT
BCH Channels
BCCH( Broadcast Control Channel )
•Downlinkonly
•BroadcastsgeneralinformationoftheservingcellcalledSystem
Information
•BCCHistransmittedontimeslotzeroofBCCHcarrier
•Readonlybyidlemobileatleastonceevery30secs.
SCH( Synchronisation Channel )
•Downlinkonly
•Carriesinformationforframesynchronisation.ContainsTDMA
framenumberandBSIC.
FCCH( Frequency Correction Channel )
•Downlink only.
•Enables MS to synchronise to the frequency.
•Also helps mobiles of the ncells to locate TS 0 of BCCH carrier.
CHANNEL CONCEPT
CCCH Channels
RACH( Random Access Channel )
•Uplink only
•Used by the MS to access the Network.
AGCH( Access Grant Channel )
•Downlink only
•Used by the network to assign a signalling channel upon
successfull decoding of access bursts.
PCH( Paging Channel )
•Downlink only.
•Used by the Network to contact the MS.
CHANNEL CONCEPT
DCCH Channels
SDCCH( Standalone Dedicated Control Channel )
•Uplink and Downlink
•Used for call setup, location update and SMS.
SACCH( Slow Associated Control Channel )
•Used on Uplink and Downlink only in dedicated mode.
•Uplink SACCH messages -Measurement reports.
•Downlink SACCH messages -control info.
FACCH( Fast Associated Control Channel )
•Uplink and Downlink.
•Associated with TCH only.
•Is used to send fast messages like handover messages.
•Works by stealing traffic bursts.
CHANNEL CONCEPT
NORMAL BURST
0123456701234567
57 bits 57 bits26 bits 33
FRAME1(4.615ms)
FRAME2
Training
sequence
Data Data
Tail
Bits
Tail
Bits
Flag
Bit
Flag
Bit
Guard
Period
Guard
Period
0.546ms
0.577ms
CarriestrafficchannelandcontrolchannelsBCCH,PCH,AGCH,SDCCH,
SACCHandFACCH.
CHANNEL CONCEPT
FREQUENCY CORRECTION BURST
0123456701234567
142 bits 33
FRAME1(4.615ms) FRAME2
Fixed Data
Tail
Bits
Tail
Bits
Guard
Period
Guard
Period
0.546ms
0.577ms
•Carries FCCH channel.
•Made up of 142 consecutive zeros.
•Enables MS to correct its local oscillator locking it to that of the BTS.
CHANNEL CONCEPT
SYNCHRONISATION BURST
0123456701234567
39 bits 33
FRAME1(4.615ms) FRAME2
Synchronisation
Sequence
Tail
Bits
Tail
Bits
Guard
Period
Guard
Period
0.546ms
0.577ms
64 bits 39 bits
Encrypted
Bits
Encrypted
Bits
•Carries SCH channel.
•Enables MS to synchronise its timings with the BTS.
•Contains BSIC and TDMA Frame number.
CHANNEL CONCEPT
DUMMY BURST
0123456701234567
57 bits 57 bits26 bits 33
FRAME1(4.615ms) FRAME2
Training
sequence
Data Data
Tail
Bits
Tail
Bits
Flag
Bit
Flag
Bit
Guard
Period
Guard
Period
0.546ms
0.577ms
•TransmittedontheunusedtimeslotsoftheBCCHcarrierinthe
downlink.
CHANNEL CONCEPT
NEED FOR TIMESLOT OFFSET
0123456701234567
0123456701234567
•IfUplinkandDownlinkarealignedexactly,thenMSwillhaveto
transmitandreceiveatthesametime.Toovercomethisproblema
offsetof3timeslotsisprovidedbetweendownlinkanduplink
BSS Downlink
MS Uplink
CHANNEL CONCEPT
0123456701234567
5670123456701234
•AsseentheMSdoesnothavetotransmitandreceiveatthesame
time.ThissimplifiestheMSdesignwhichcannowuseonlyone
synthesizer.
BSS Downlink
MS Uplink
5
0
3 timeslot
offset
CHANNEL CONCEPT
NEED FOR TIMESLOT OFFSET
T
15
T
5
T
9
T
10
T
11
S
12
T
13
T
14
T
6
T
7
T
8
T
0
T
1
T
2
T
3
T
4
T
16
T
17
T
18
T
19
T
20
T
21
T
22
T
23
T
24
I
25
012345670123456701234567
120 msec
4.615 msec
26 FRAME MULTIFRAME STRUCTURE
•MSondedicatedmodeonaTCHusesa26-framemultiframe
structure.
•Frame0-11and13-24usedtocarrytraffic.
•Frame12usedasSACCHtocarrycontrolinformationfromandtoMS
toBTS.
•Frame25isidleandisusedbymobiletodecodetheBSICofneighbor
cells.
CHANNEL CONCEPT
CHANNEL CODING
•Channel coding adds redundancy bits to the original information in
order to detect and correct, if possible, errors ocurred during the
transmission.
•The channel coding is performed using two codes: a block code and
a convolutional code.
•The block code receives an input block of 240 bits and adds four
zero tail bits at the end of the input block. The output of the block
code is consequently a block of 244 bits.
•A convolutional code adds redundancy bits in order to protect the
information. A convolutional encoder contains memory. This property
differentiates a convolutional code from a block code.
•A convolutional code can be defined by three variables : n, k and K.
•The value n corresponds to the number of bits at the output of the
encoder, k to the number of bits at the input of the block and K to the
memory of the encoder.
CODING
CHANNEL CODING ( Cont )
•The ratio, R, of the code is defined as R = k/n.
Example-Let'sconsideraconvolutionalcodewiththefollowing
values:kisequalto1,nto2andKto5.Thisconvolutionalcodeuses
thenarateofR=1/2andadelayofK=5,whichmeansthatitwill
addaredundantbitforeachinputbit.Theconvolutionalcodeuses5
consecutivebitsinordertocomputetheredundancybit.Asthe
convolutionalcodeisa1/2rateconvolutionalcode,ablockof488bits
isgenerated.These488bitsarepuncturedinordertoproduceablock
of456bits.Thirtytwobits,obtainedasfollows,arenottransmitted:
C(11+15j)forj=0,1,...,31
•Theblockof456bitsproducedbytheconvolutionalcodeisthen
passedtotheinterleaver
Convolution code R = k/n = 1/2k=1
1 bit input
n=2
2 bit input
CODING
DATA INTERLEAVING
•Aparticularinterleavingscheme,withaninterleavingdepthequalto22,
isappliedtotheblockof456bitsobtainedafterthechannelcoding.
•Theblockisdividedinto16blocksof24bitseach,2blocksof18bits
each,2blocksof12bitseachand2blocksof6bitseach.
•Itisspreadover22burstsinthefollowingway:
•thefirstandthetwenty-secondburstscarryoneblockof6bits
each
•thesecondandthetwenty-firstburstscarryoneblockof12bits
each
•thethirdandthetwentiethburstscarryoneblockof18bitseach
•fromthefourthtothenineteenthburst,ablockof24bitsisplaced
ineachburst
•Aburstwillthencarryinformationfromfiveorsixconsecutivedata
blocks.Thedatablocksaresaidtobeinterleaveddiagonally.
•Anewdatablockstartseveryfourbursts.
INTERLEAVING
CIPHERING
•Cipheringisusedtoprotectsignalinganduserdata.
•AcipheringkeyiscomputedusingthealgorithmA8storedonthe
SIMcard,thesubscriberkeyandarandomnumberdeliveredbythe
network(thisrandomnumberisthesameastheoneusedforthe
authenticationprocedure).
•A114bitsequenceisproducedusingthecipheringkey,analgorithm
calledA5andtheburstnumbers.
•ThisbitsequenceisthenXORedwiththetwo57bitblocksofdata
includedinanormalburst.
•Inordertodeciphercorrectly,thereceiverhastousethesame
algorithmA5forthedecipheringprocedure.
MODULATION
•Modulation is done using 0.3 GMSK
MODULATION
SIGNALLING
Other Networks
•Thetermsignalingisusedinmanycontexts.
•Intechnicalsystems,itveryoftenreferstothecontrolofdifferent
procedures.
•Withreferencetotelephony,signalingmeansthetransferof
informationandtheinstructionsrelevanttocontrolandmonitor
telephonyconnections.
SIGNALLING SYSTEM
WHAT IS SIGNALLING ?
SIGNALING IN TELECOMMUNICATION NETWORK
DIGITAL SUBSCRIBER SIG.
SUBSCRIBER LINE SIG.
ACCESS SIG
SIGNALLING
TRUNK SIGNALLING
CHANNEL ASSOCIATED SIG.
COMMON CHANNEL SIG.
PHYSICAL
LINK
NETWORK
TRANSPORT
SESSION
PRESENTATION
OSI MODEL REFERENCE DIAGRAM
APPLICATION
PHYSICAL
LINK
NETWORK
TRANSPORT
SESSION
PRESENTATION
APPLICATION
COMMUNICATION PROCESS
•Eachlayerhasitsownspecifiedfunctionsandprovidesspecific
servicesforthelayersabove.
•Itisimportanttodefinetheinterfacesbetweendifferentlayersandthe
functionswithineachlayer.
•Thewayafunctionisrealizedwithinalayerisnotpredicted.
•Logically,thecommunicationbetweenfunctionsalwaystakesplace
onthesamelevelaccordingtotheprotocolsforthatlevel.
•Onlyfunctionsonthesamelevelcan“talktoeachother”.
•Inthetransmittingsystem,theprotocolforeachlayeradds
informationtothedatareceivedfromthelayerabove.
•Theadditionusuallyconsistsofaheaderand/oratrailer.
•Inthereceivingsystem,theadditionsareused,forexample,to
identifybitsordatafieldscarryinginformationforthatspecificlayer
only.
•Thesefieldsaredecodedbylayerfunctionalityandareremoved
whendeliveringthemessagetotheapplicationsorlayersabove.
PHYSICAL
LINK
NETWORK
TRANSPORT
SESSION
PRESENTATION
APPLICATION
SIGNALLING DATA LINK
SIGNALLING LINK
SIGNALLING NETWORK
SCCP
TCAP
USER PARTS
ASE
OSI Model CCITT SS NO 7 Model
MTP NSP
CALL FLOW
Mobile originated call
MS
Channel Request (RACH)
BSS MSC
SDCCH Seizure
Immediate Assignment [ Reject ] (AGCH)
CM Service Request + Connection Request < CMSREQ >
Connection [ Confirmed / Refused ]
Link Establishment
Authentication Request
Authentication Response
DT1 <CICMD>
Ciphering Mode Command
Ciphering Mode Complete
DT1 <CICMP>
Identity Request
Identity Response
Setup
Call Proceeding
Connection Management
Assignment Request
Assignment Request [ Failed ]
Assignment Command
Assignment [ Complete / Failure ]
Assignment [ Complete / Failure ]
TCH Seizure
S
D
C
C
H
T
C
H
MS BSS MSC
Paging
SDCCH Seizure
Link Establishment
Paging Request (PCH)
UDT < PAGIN >
Paging
Channel Request (RACH)
Immediate Assignment [ Reject ] (AGCH)
Paging Response + Connection Request < PAGRES >
Connection [ Confirmed / Refused ]
Authentication Request
Authentication Response
S
D
C
C
H
Ciphering Mode Command
Ciphering Mode Complete
DT1 <CICMD>
DT1 <CICMP>
Identity Request
Identity Response
Setup
Call Confirmed
Connection Management
Assignment Request
Assignment Request [ Failed ]
Assignment Command
Assignment [ Complete / Failure ]
T
C
H TCH Seizure
Assignment [ Complete / Failure ]
Mobile terminated call
POWER CONTROL
RF POWER CONTROL
•RFpowercontrolisemployedtominimisethetransmitpower
requiredbyMSorBSwhilemaintainingthequalityoftheradiolinks.
•Byminimisingthetransmitpowerlevels,interferencetoco-channel
usersisreduced.
•PowercontrolisimplementedintheMSaswellastheBSS.
•PowercontrolontheUplinkalsohelpstoincreasethebatterylife.
•TheRFpowerlevelemployedbytheMSisindicatedbymeansofthe
5bitTXPWRfieldsenteitherinthelayer1headerofeachdownlink
SACCHmessageblock,orinadedicatedsignallingblock.
•TheMSconfirmsthepowerlevelthatitiscurrentlyemployingby
settingtheMS_TXPWR_CONF fieldintheuplinkSACCHL1header
toitscurrentpowersetting.Thevalueofthisfieldisthepowersetting
actuallyusedbythemobileforthelastburstofthepreviousSACCH
period.
•TheMSemploysthemostrecentlycommandedRFpowerlevel
appropriatetothechannelforalltransmittedburstsoneitheraTCH
(includinghandoveraccessburst),FACCH,SACCHorSDCCH.
•WhenaccessingacellontheRACH(randomaccess)andbefore
receivingthefirstpowercommandduringacommunicationona
DCCHorTCH(afteranIMMEDIATEASSIGNMENT),theMSuses
eitherthepowerleveldefinedbytheMS_TXPWR_MAX_CCH
parameterbroadcastontheBCCHofthecell,orthemaximum
TXPWRoftheMSasdefinedbyitspowerclass,whicheveristhe
lower.
POWER CONTROL IN THE MS
POWER CONTROL MS
•TherangeoverwhichaMSiscapableofvaryingitsRFoutput
powerisfromitsmaximumoutputdownto20mW,instepsof
nominally2dB.
•0-43dBm…….15-13dBm.8 7 6 5 4 3 2 1
Octet 1
Octet 2
Ordered MS Power LevelSpare
Ordered Timing AdvanceSpare
1111111 indicates this field does not have any TA value
TIMING OF POWER CHANGE BY MS
•UponreceiptofacommandontheSACCHtochangeitsRFpower
level(TXPWRfield)theMSchangestothenewlevelatarateof
onenominal2dBpowerstepevery60ms(13TDMAframes),i.e.a
fullrangechangeof15stepsshouldtakeabout900ms.
•ThechangecommencesatthefirstTDMAframebelongingtothe
nextreportingperiod.TheMSchangesthepoweronenominal2
dBstepatatime,atarateofonestepevery60msfollowingthe
initialchange,irrespectiveofwhetheractualtransmissiontakes
placeornot.
•Incaseofchannelchangethecommandedpowerlevelisapplied
onthenewchannelimmediately.
BSS POWER CONTROL
•PowercontrolatBSSisoptional.
•TherangeoverwhichtheBSiscapableofreducingitsRFoutput
powerfromitsmaximumlevelisnominally30dB,in15stepsof
nominally2dB.
RADIO LINK FAILURE
•The criterion for determining Radio Link Failure in the MS is based on
the success rate of decoding messages on the downlink SACCH.
•The radio link failure criterion is based on the radio link counter S.
•If the MS is unable to decode a SACCH message, S is decreased by 1.
•If a SACCH message is decodedsuccessfully,S is increased by 2.
•If S reaches 0 a radio link failure is assumed & the MS aborts the conn.
•The RADIO_LINK_TIMEOUT parameter is transmitted by each BS in the
BCCH data.4
Decoded
3
Not Decoded
2
1
0
SACCH Blocks
RADIO LINK FAILURE
•TheMScontinuestransmittingasnormalontheuplinkuntilS
reaches0.
•Thealgorithmwillstartaftertheassignmentofadedicatedchannel
andSisinitializedtoRADIO_LINK_TIMEOUT.
•TheaimofdeterminingradiolinkfailureintheMSistoensurethat
callswithunacceptablevoice/dataquality,whichcannotbeimproved
eitherbyRFpowercontrolorhandover,areeitherre-establishedor
releasedinadefinedmanner.
•Ingeneraltheparametersthatcontroltheforcedreleaseshouldbe
setsuchthattheforcedreleasewillnotnormallyoccuruntilthecall
hasdegradedtoaqualitybelowthatatwhichthemajorityof
subscriberswouldhavemanuallyreleased.Thisensuresthat,for
example,acallontheedgeofaradiocoveragearea,althoughof
badquality,canusuallybecompletedifthesubscriberwishes.
PATH LOSS CRITEREON( C1)
A = +Good Downlink
-Poor Downlink
B = -Good Downlink
+Poor Downlink
Monitoring of Received Level and BCCH data
•InIdleModeanMScontinuestomonitorallBCCHcarriersas
indicatedbytheBCCHAllocation.
•Arunningaverageofreceivedlevelinthepreceding5to60seconds
isbemaintainedforeachcarrierintheBCCHAllocation.
•Fortheservingcellreceivelevelmeasurementsamplesistakenat
leastforeachpagingblockoftheMSandthereceivelevelaverage
isdeterminedusingsamplescollectedoveraperiodof5sorfive
consecutivepagingblocksofthatMS,whicheveristhegreater
period.
Monitoring of Received Level and BCCH data
•Atleast5receivedlevelmeasurementsamplesarerequiredper
receivelevelaveragevalue.Newsetsofreceivelevelaverage
valuesiscalculatedasoftenaspossible.
•Thesamenumberofmeasurementsamplesistakenforallnon
servingcellBCCHcarriers,andthesamplesallocatedtoeachcarrier
isasfaraspossibleuniformlydistributedovereachevaluation
period.
•Thelistofthe6strongestcarriersisupdatedatleasteveryminute
andmaybeupdatedmorefrequently.
•Inordertominimisepowerconsumption,MSsthatemployDRX(i.e.
powerdownwhenpagingblocksarenotdue)monitorthesignal
strengthsofnon-servingcellBCCHcarriersduringtheframesofthe
PagingBlockthattheyarerequiredtolistento.Receivedlevel
measurementsamplescanthusbetakenonseveralnon-serving
BCCHcarriersandontheservingcarrierduringeachPagingBlock.
•TheMSincludestheBCCHcarrierofthecurrentservingcell(i.e.the
celltheMSiscampedon)inthismeasurementroutine.
AVAILABLE PAGING BLOCKS ON 1 CCCH_GROUP
Maximum AGCH reservation for non-combined multiframe = 7
Available paging blocks = 2
Maximum AGCH reservation for combined multiframe = 1
Available paging blocks = 2
Minimum AGCH reservation for non-combined multiframe = 0
Available paging blocks = 9
Minimum AGCH reservation for combined multiframe = 0
Available paging blocks = 3
No of paging blocks will have a range of 2 -9
MEASUREMENT IN ACTIVE MODE012345670123456701234567012
012345670123456701234567012
Frame 24 Frame 25 Idle Frame Frame 0
Frame 24 Frame 25 Idle Frame Frame 0
1 2 3 1 2 1 2
1.MS receives and measures signal strength on serving cell(TS2).
2.MS transmits
3.MS measures signsl strength for at least one neighbor cell.
4.MS reads BSIC on SCH for one of the 6 strongest neighbor.
4
Downlink
Uplink
HANDOVER
•Maximum32averagingofRSStakesplace.
•Practicallyacellneighborscanbeequippedforacell.
•Ifhighnumbersofneighborsareequipped,thentheaccuracyof
RSSisdecreasedasshouldhave8to10neighbors.
T
15
T
5
T
9
T
10
T
11
S
12
T
13
T
14
T
6
T
7
T
8
T
0
T
1
T
2
T
3
T
4
T
16
T
17
T
18
T
19
T
20
T
21
T
22
T
23
T
24
I
25
T
15
T
5
T
9
T
10
T
11
S
12
T
13
T
14
T
6
T
7
T
8
T
0
T
1
T
2
T
3
T
4
T
16
T
17
T
18
T
19
T
20
T
21
T
22
T
23
T
24
I
25
T
15
T
5
T
9
T
10
T
11
S
12
T
13
T
14
T
6
T
7
T
8
T
0
T
1
T
2
T
3
T
4
T
16
T
17
T
18
T
19
T
20
T
21
T
22
T
23
T
24
I
25
T
15
T
5
T
9
T
10
T
11
S
12
T
13
T
14
T
6
T
7
T
8
T
0
T
1
T
2
T
3
T
4
T
16
T
17
T
18
T
19
T
20
T
21
T
22
T
23
T
24
I
25
NUMBER OF NEIGHBORS
HANDOVER
NUMBER OF NEIGHBORS
•In one SACCH multiframe there are 104 TDMA frames.
•Outofthis104frames4framesareidleandareusedtodecodethe
BSIC.
•Remaining100TDMAframesareusedtomeasureRSS(Received
SignalStrength)oftheneighbor.
•If25neigborsareequipped,theninoneSACCHmultiframeeach
neigborismeasured100/25=4timesandaveragedout.This
producesalessaccuratevalue.
•If10neigborsareequipped,theninoneSACCHmultiframeeach
neigborismeasured100/10=10timesandaveragedout.This
producesamoreaccuratevalue.
HANDOVER
•GSM causes its own time interference.
•The MS has a omni-directional antenna. Much of the MS power goes
to the server but a lot is interfering with surrounding cells using the
same channel.
•The TDMA frames of adjacent cell are not aligned since they are not
synchronised. Hence the uplink in the surrounding cell suffers from
interference.
INTERFERENCE ON IDLE CHANNEL
Channel 10
Cell 1
Channel 10
Cell 2
HANDOVER
•TheBSSkeepsonmeasuringtheinterferenceontheidletimeslots.
•Ambientnoiseismeasuredandrecorded104timesinoneSACCH
multiframe.
•Thesemeasurementsareaveragedouttoproduceonefigure.
•TheBSSthendistributestheidletimeslotsintoband0toband5.
•SincetheBSSknowstheinterferencelevelonidletimeslots,ituses
thisdatatoallocatethebestchannelfirstandtheworstlast.
INTERFERENCE ON IDLE CHANNEL0 1 2 3 4 5 6 7
Inteference on idle channel measured on Idle Timeslot by BSS
HANDOVER
•Handovertakesplaceinthesamecellfromonetimeslottoanother
timeslotofthesamecarrierordifferentcarriers(butthesamecell).
•Intra-cellhandoveristriggeredonlyifthecauseisinterference.
•Intra-cellhandovercanbeenabledordisabledinacell.
HANDOVER TYPES
Intra-Cell Handover
BSC
BTS
Call is handed
from timeslot 3 to timeslot 501234567
HANDOVER
•Handovertakesplacebetweendifferentcellwhicharecontrolledby
thesameBSC.
HANDOVER TYPES
Intra-BSC Handover
BSC1
BTS1
Call is handed from timeslot 3
of cell1 to timeslot 1 of cell2 .
Both the cells are controlled
by the same BSC.01234567 01234567
HANDOVER
•Handovertakesplacebetweendifferentcellwhicharecontrolledby
thedifferentBSC.
HANDOVER TYPES
Inter-BSC Handover
BSS1
BTS1
Call is handed from timeslot 3
of cell1 to timeslot 1 of cell2 .
Both the cells are controlled
by the different BSC.01234567 01234567
BSS2
MSC
BTS2
HANDOVER
•Handovertakesplacebetweendifferentcellwhicharecontrolledby
thedifferentBSCandeachBSCiscontrolledbydifferentMSC.
HANDOVER TYPES
Inter-MSC Handover
BSS1
BTS1
Call is handed from timeslot 3
of cell1 to timeslot 1 of cell2 .
Both the cells are controlled
by the different BSC, each BSC
being controlled by different MSC.01234567 01234567
BSS2
MSC1
BTS2
MSC2
HANDOVER
•During conversation user talks alternatively.
•In DTX mode of operation the transmitter are switched on only
for frames containing useful information.
•Helps to increase battery life and reduce interference level.
T
15
T
5
T
9
T
10
T
11
S
12
T
13
T
14
T
6
T
7
T
8
T
0
T
1
T
2
T
3
T
4
T
16
T
17
T
18
T
19
T
20
T
21
T
22
T
23
T
24
I
25
T
15
T
5
T
9
T
10
T
11
S
12
T
13
T
14
T
6
T
7
T
8
T
0
T
1
T
2
T
3
T
4
T
16
T
17
T
18
T
19
T
20
T
21
T
22
T
23
T
24
I
25
T
15
T
5
T
9
T
10
T
11
S
12
T
13
T
14
T
6
T
7
T
8
T
0
T
1
T
2
T
3
T
4
T
16
T
17
T
18
T
19
T
20
T
21
T
22
T
23
T
24
I
25
T
15
T
5
T
9
T
10
T
11
S
12
T
13
T
14
T
6
T
7
T
8
T
0
T
1
T
2
T
3
T
4
T
16
T
17
T
18
T
19
T
20
T
21
T
22
T
23
T
24
I
25
DISCONTINOUS TRANSMISSION
SID
IMPLEMENTATION OF DTX
Voice Activity Detector ( VAD )
•Determines which specific block of 20ms from the speech coder
contains speech.
•Removes statinary noise.
•Inserts comfort noise.
•The frames containing this background noise are called SID frames
and are sent in blocks of 8 frames within every 104 frame block.
VAD Speech / No speech
20 ms speech
block
WhatissentisoptionalonBCCHMultiframe4and5
•Systeminformation5and6aresentontheSACCHimmediately
afterHOorwhenevernothingelseisbeingsent.
•DownlinkSACCHisusedforsysteminformationmessageswhile
UplinkSACCHisusedformeasurementreports.
BROADCAST MESSAGESSystem
Information
BCCH
Multiframe
1 0
2 1
3 2 and 6
4 3 and 7
SYS INFORMATION MESSAGES
SYSTEM INFORMATION 1
WhenfrequencyhoppingisusedincellMSneedstoknowwhich
frequencybandtouseandwhatfrequencywithinthebanditshould
useinhoppingalgorithm.
Cell Channel Description
Cell allocation number:-Informs the band number of the
frequency channels used.
00 -Band 0 ( Current GSM band )
Cell allocation ARFCN:-ARFCN’s used for hopping. It is coded
in a bitmap of 124 bits.124123122121
016015014013012011010009
008007006005004003002001
SYS INFORMATION MESSAGES
SYSTEM INFORMATION 1
RACHControlParameters
AccessControlClass:-Bitmapwith16bits.AllMSspreadouton
class0-9.Prioritygroupsuseclass11-15.Abitsetto1barres
accessforthatclass.Bit10isusedtotelltheMSifemergencycall
isallowedornot.
0-AllMScanmakeemergencycall.
1-MSwithclass11-15onlycanmakeemergencycalls.
Cellbarredforaccess:-
0-Yes
1-No
SYS INFORMATION MESSAGES
RACHControlParameters
Re-establishmentallowed:-
0–Yes
1-No
max_retransmissions:-NumberoftimestheMSattemptsto
accesstheNetwork[1,2,4or7].
tx_integer:-Numberofslotstospreadaccessretransmissions
whenaMSattemptstoaccessthesystem.
EmergencyCallAllowed:-Yes/No
SYSTEM INFORMATION 1
SYS INFORMATION MESSAGES
•ContainslistofBCCHfrequenciesusedinneighborcells.
•MSusesthislisttomeasuresthesignalstrengthoftheneighbors.
NeighborCellDescription
BAIndicator:-Allowstodifferentiatemeasurementresultsrelated
todifferentlistofBCCHfrequenciessenttotheMS.
BCCHAllocationnumber:-Band0isused.
BCCHARFCNnumber:-Bitmap1-124
1 = Set
0 = Not set
PLMNpermitted
RACHControlParameters
SYSTEM INFORMATION 2
SYS INFORMATION MESSAGES
SYSTEM INFORMATION 3
LocationAreaIdentity
CellIdentity8 7 6 5 4 3 2 1
Octet A
1 1 1 1 Octet B BCD
Octet C
Octet D
Octet E
MCC DIG 1MCC DIG 2
MCC DIG 3
MNC DIG 1MNC DIG 2
LAC
LAC
Binary 8 7 6 5 4 3 2 1
Octet F
Octet G
CI
CI
Binary
SYS INFORMATION MESSAGES
SYSTEM INFORMATION 3
CellOptions
dtx
pwrc:-Powercontrolonthedownlink.
0=Notused
1=Used
Radiolinktimeout:-SetsthetimerT100intheMS.
CellSelectionParameters
Rxlev_access_min:-MinimumreceivedsignallevelattheMSfor
whichitispermittedtoaccessthesystem.
0-63=-110dBmto-47dBm
mx_txpwr_cch:-MaximumpowertheMSwillusewhenaccessing
thesystem.
Cell_reselect_hysteresis:-Usedforcellreselection.
RACHControlParameters
SYS INFORMATION MESSAGES
SYSTEM INFORMATION 4
Location Area Identification
Cell Selection Parameters
Rxlev_access_min
mx_txpwr_cch
Cell_reselect_hysteresis
RACH Control Parameters
max_retransmissions
tx_integer
Cell barred for access
Re-establishment allowed
Emergency Call Allowed
Access Control Class
SYS INFORMATION MESSAGES
SYSTEM INFORMATION 4
ChannelDescription
Channeltype:-Indi.channeltypeSDCCHorCBCH(SDCCH/8).
Subchannelnumber:-Indicatesthesubchannel.
Timeslotnumber:-IndicatesthetimeslotforCBCH[0-7].
TrainingSequenceCode:-TheBCCpartofBSIC[0-7].
HoppingChannel(H):-InformsifCBCHchannelishoppingor
single.0-SingleRFChannel1-RFhoppingchannel
ARFCN:-IfH=0
MAIO:-IfH=1,informstheMSwheretostarthopping.Values[0
-63].
HSN:-IfH=1,informstheMSinwhatorderinwhatorderthe
hoppingshouldtakeplace.Values[0-63].HSN=0Cyclic
Hopping.
MA:-IndicateswhichRFChannelsareusedforhopping.ARFCN
numberscodedinbitmap.
SYS INFORMATION MESSAGES
SYSTEM INFORMATION 5
Sent on the SACCH on the downlink to the MS in dedicated mode.
Neighbour Cell Description
BA-IND :-Used by the Network to discriminate measurements
results related to different lists of BCCH carriers sent by the MS(
Type 2 or 5).
Values 0 or 1 ( different from type 2).
BCCH Allocation number :-00 -Band 0 (Current GSM band).
BCCH ARFCN :-Neighboring cells ARFCN’s. Sent as a bitmap.
0 = ARFCN not used
1 = ARFCN used124123122121
016015014013012011010009
008007006005004003002001
SYS INFORMATION MESSAGES
SYSTEM INFORMATION 6
•MSindedicatedmodeneedstoknowiftheLAhaschanged.
•MSmaychangebetweencellswithdifferentRadiolinktimeout
andDTX.
Cell Identity
Location Area Identification
Cell Options
dtx
pwrc
Radio link timeout
PLMN permitted
SYS INFORMATION MESSAGES
PAGING
•WhenevertheNetworkwantstocontacttheMS,itsends
messagesonthepagingchannel.
•PagingissentonthePCHanditoccupies4bursts.
•MShastomonitorthepagingchanneltoreceivepaging
messages.
•MSdoesnotmonitorallpagingchannelbutonlyspecificpaging
channels.
•TherearethreetypesofpagingmessagesPaging
Type
No of MS
using IMSI
No of MS
using TMSI
Total no of
MS
1 2 - 2
2 1 2 3
3 - 4 4
SYS INFORMATION MESSAGES
CALCULATION OF PAGING GROUP
Following factors are used for calculation of paging group
•CCCH_group
– cch_conf in System Information 3 defines the number of
CCCH used in the cell.
– CCCH can be allocated only TN 0, 2, 4, 6.
– Each CCCH carries its own paging group of MS.
– MS will listen to paging messages of its specific group.
•bs_pa_mfrms
•bs_ag_blk_res
SYS INFORMATION MESSAGES
CALCULATION OF PAGING GROUP
Total number of paging groups on 1 CCCH_GROUP(N)
No of paging groups N =Paging blocks*Repitition of paging blocks
=[ CCCH -bs_ag_blk_res ]*bs_pa_mfrms
Range of Paging Groups on 1 CCCH_Group
Minimum available Paging Groups =Min pag blocks* min bs_pa_mfrms
=2*2
= 4
Maximum available Paging Groups =Max pag blocks* max bs_pa_mfrms
=9*9
= 81
SYS INFORMATION MESSAGES
AVAILABLE PAGING BLOCKS ON 1 CCCH_GROUP
Maximum AGCH reservation for non-combined multiframe = 7
Available paging blocks = 2
Maximum AGCH reservation for combined multiframe = 1
Available paging blocks = 2
Minimum AGCH reservation for non-combined multiframe = 0
Available paging blocks = 9
Minimum AGCH reservation for combined multiframe = 0
Available paging blocks = 3
No of paging blocks will have a range of 2 -9
SYS INFORMATION MESSAGES
MS
CELL
RACH
IMMEDIATE ASSIGNMENT
REJECT (AGCH)
NO SDCCH AVAILABLE
IF T3122 EXPIRES,
MS CAN NOW SEND
A FRESH REQUEST
SET T3122 IN MS
EQUAL TO
WAIT_INDICATION
RACH
INACTIVE MODE
T3110 AND T3111 -Normal Release
Channel Release
Start timer T3109
Start timer T3110
Disconnect
Stop timer T3109
Start timer T3111
UA
Stop T3110 on the
receipt of UA
T3111 expired
Release Radio
Resources
FREQUENCY HOPPING
Information is
transmitted
by different frequencies
at
different timeslot
Voice
Modulated
RF signal
f1
f2
f3
f4
f1
INTRODUCTION TO FREQUENCY HOPPING
•RFplanningplaysacriticalroleintheCellulardesignprocess.
•BydoingaproperRFPlanningbykeepingthefuturegrowthplanin
mindwecanreducealotofproblemsthatwemayencounterinthe
futureandalsoreducesubstantiallythecostofoptimization.
•On the other hand a poorly planned network not only leads to many
Network problems , it also increases the optimization costs and still
may not ensure the desired quality.
TOOLS USED FOR RF PLANNING
•Network Planning Tool
•CW Propagation Tool
•Traffic Modeling Tool
•Project Management Tool
INTRODUCTION TO RF
PLANNING
Network Planning Tool(PLANET)
INTRODUCTION TO RF
PLANNING
Propagaton Test Kit
•Thepropagationtestkitconsistsof
–Testtransmitter.
–Antenna(generallyOmni).
–ReceivertoscantheRSS(Receivedsignallevels).Thereceiver
scanningrateshouldbesettablesothatitsatisfiesLee’slaw.
–Alaptoptocollectdata.
–AGPStogetlatitudeandlongitude.
–Cablesandaccessories.
–WattmetertocheckVSWR.
•A single frequency is transmitted a predetermined power level from the
canditate site.
•These transmitted power levels are then measured and collected by the
Drive test kit. This data is then loaded on the Planning tool and used for
tuning models.
•Commonly Graysons or CHASE prop test kits are used.
INTRODUCTION TO RF
PLANNING
Project Management Tool
•Though not directly linked to RF Design Planning, it helps in scheduling
the RF Design process and also to know the status of the project
•Site database : This includes RF data, site acquisition,power, civil ,etc.
•Inventory Control
•Fault tracking
•Finance Management
INTRODUCTION TO RF
PLANNING
Setup site tracking database
ThisisdoneusingProjectmanagementorsitemanagement
databases.
Thisisthecentraldatabasewhichisusedbyallrelevant
department,viz.RF,Siteacquisition,Power,Civilengineeringetc,
andavoidsdatamismatch.
Load master lease site locations in database
Ifpredeterminedfriendlysitesthatcanbeusedareavailable,
thenloadthisdataintothesitedatabase.
PRELIMINARY WORK
Marketing Analysis and GOS determination
Marketing analysis is mostly done by the customer.
Growthplanisprovidedwhichliststheprojectedsubscriber
growthinphases.
GOSisdeterminedinagreementwiththecustomer(generallythe
GOSistakenas2%)
Basedonthemarketinganalysis,GOSandnumberofcarriersas
inputs,thenetworkdesigniscarriedout.
Zoning Analysis
Thisinvolvesstudyingtheheightrestrictionsforantennaheights
inthedesignarea.
PRELIMINARY WORK
PrepareInitialSearchRing
Notethelatitudeandlongitudefromplanningtool.
Gettheaddressoftheareafrommappingsoftware.
Releasethesearchringwithdetailslikeradiusofsearchring,
heightofantennaetc.
Release search rings to project management
Visit friendly site locations
Iftherearefriendlysitesavailablethatcanbeused(infrastructure
sharing),thenthesesitesaretobegivenpreference.
Ifthesesitessuitethedesignrequirements,thenvisitthesesites
first.
SELECTION OF SITES
SelectInitialAnchorSites
Initialanchorsitesarethesiteswhichareveryimportantforthe
networkbuildup,Eg-SitesthatwillalsoworkasaBSC.
Enter Data In Propagation Tool
Enter the sites exact location in the planning tool.
Perform Propagation Analysis
Now since the site has been selected and the lat/lon of the actual
site ( which will be different from the designed site) is known, put
this site in the planning tool and predict coverage.
Check to see that the coverage objectives are met as per
prediction.
SELECTION OF SITES
Reset/ReviewSearchRings
Ifthepredictionshowsacoveragehole(astheactualsitemay
beshiftedfromthedesignedsite),thesurroundingsearchrings
canberesettedandreviewed.
CandidatesiteVisit(Average3perring)
For each proposed location, surveys should carried out and at
least 3 suitable site candidates identified.
Details of each candidate should be recorded on a copy of the
Site Proposal Form for that site. Details must include:
»SitenameandoptionletterSitelocation(Lat./Long)
»Building Height
»Site address and contact number
»Height of surrounding clutter
»Details of potential coverage effecting obstructions or
other comments(A, B, C,...)
SELECTION OF SITES
BASIC DEFINITIONS
Isotropic RF Source
ApointsourcethatradiatesRFenergyuniformlyinalldirections
(I.e.:intheshapeofasphere)
Theoreticalonly:doesnotphysicallyexist.
HasapowergainofunityI.e.0dBi.
Effective Radiated Power (ERP)
Hasapowergainofunityi.e.0dBi
Theradiatedpowerfromahalf-wavedipole.
Alosslesshalf-wavedipoleantennahasapowergainof0dBdor
2.15dBi.
Effective Isotropic Radiated Power (EIRP)
Theradiatedpowerfromanisotropicsource
EIRP = ERP + 2.15 dB
BASIC DEFINITIONS
•Radio signals travel through space at the Speed of Light
C = 3 * 10
8
meters / second
•Frequency (F) is the number of waves per second (unit: Hertz)
•Wavelength () (length of one wave) = (distance traveled in one second)
(waves in one second)
= C / F
If frequency is 900MHZ then
wavelength = 3 * 10
8
900 * 10
6
= 0.333 meters
BASIC DEFINITIONS
dB
•dB is a a relative unit of measurement used to describe power gain or
loss.
•The dB value is calculated by taking the log of the ratio of the measured
or calculated power (P2) with respect to a reference power (P1). This
result is then multiplied by 10 to obtain the value in dB.
dB = 10 * log
10(P
1/P
2)
•The powers P
1ad P
2must be in the same units. If the units are not
compatible, then they should be transformed.
•Equal power corresponds to 0dB.
•A factor of 2 corresponds to 3dB
If P1 = 30W and P2 = 15 W then
10 * log
10(P
1/P
2) = 10 * 10 * log
10(30/15)
= 2
BASIC DEFINITIONS
dBm
•dBm = 10 log (P) (1000 mW/watt)
where dBm = Power in dB referenced to 1 milliwatt
P = Power in watts
•If power level is 1 milliwatt:
Power(dBm) = 10 log (0.001 watt) (1000 mW/watt)
= 10 log (1)
= 10 (0)
= 0
•Thus a power level of 1 milliwatt is 0 dBm.
•If the power level is 1 watt
1 watt Power in dBm = 10 log (1 watt) (1000 mW/watt)
= 10 (3)
= 30
BASIC DEFINITIONS
dBm
•dBm = 10 log (P) (1000 mW/watt)
where dBm = Power in dB referenced to 1 milliwatt
P = Power in watts
•If power level is 1 milliwatt:
Power(dBm) = 10 log (0.001 watt) (1000 mW/watt)
= 10 log (1)
= 10 (0)
= 0
•Thus a power level of 1 milliwatt is 0 dBm.
•If the power level is 1 watt
1 watt Power in dBm = 10 log (1 watt) (1000 mW/watt)
= 10 (3)
= 30
BASIC DEFINITIONS
dBm
•dBm = 10 log (P) (1000 mW/watt)
•The dBm can also be negative value.
•If power level is 1 microwatt
Power in dBm = 10 log (1 x 10E-6 watt) (1000 mW/watt)
=-30dBm
•Since the dBm has a defined reference it can be converted back to
watts if desired.
•Since it is in logarithmic form it may also be conveniently combined
with other dB terms.
BASIC DEFINITIONS
dBv/m
•To convert field strength in dbv/m to received power in dBm with a
50optimum terminal impedance and effective length of a half wave
dipole /
0dBu=10log[(10
-6
)
2
(1000)(/)
2
/(4*50)]dBm
At850MHZ
0dBu=-132dBm
39dBu=-93dBm
FREE SPACE PROPAGATION
•Friis Formula
P
r = P
t G
tG
r
2
(4d)
2
•Propagation Loss
L
p = 10log [4d / ]
2
Thesquaretermisthepropagationexponent.Itisgreaterthan2
whenobstructionsexist.
• Propagation Loss in dB:
L
p = 32.44 + 20Log(d) +20Log(f)
f = MHz
d = km
P
t
G
t G
r
P
rL
p
d
MULTIPATH
•Multiple Waves Create “Multipath”
•Due to propagation mechanisms, multiple waves arrive at the
receiver
•Sometimes this includes a direct Line-of-Sight (LOS) signal
MULTIPATH
Multipath Propagation
•Multipath propagation causes large and rapid fluctuations in a signal
•These fluctuations are not the same as the propagation path loss.
Multipathcausesthreemajorthings
•Rapidchangesinsignalstrengthoverashortdistanceortime.
•RandomfrequencymodulationduetoDopplerShiftsondifferent
multipathsignals.
•Timedispersioncausedbymultipathdelays
•Thesearecalled“fadingeffects
•Multipathpropagationresultsinsmall-scalefading.
WHAT IS FADING ?
•Thecommunicationbetweenthebasestationandmobilestationin
mobilesystemsismostlynon-LOS.
•TheLOSpathbetweenthetransmitterandthereceiverisaffectedby
terrainandobstructedbybuildingsandotherobjects.
•Themobilestationisalsomovingindifferentdirectionsatdifferent
speeds.
•TheRFsignalfromthetransmitterisscatteredbyreflectionand
diffractionandreachesthereceiverthroughmanynon-LOSpaths.
•Thisnon-LOSpathcauseslong-termandshorttermfluctuationsin
theformoflog-normalfadingandrayleighandricianfading,which
degradestheperformanceoftheRFchannel.
WHAT IS FADING ?
Signal Power (dBm)
Large scale fading component
Small scale fading
component
LONG TERM FADING
•Terrainconfiguration&manmadeenvironmentcauseslong-term
fading.
•Duetovariousshadowingandterraineffectsthesignallevel
measuredonacirclearoundbasestationshowssomerandom
fluctuationsaroundthemeanvalueofreceivedsignalstrength.
•Thelong-termfadesinsignalstrength,r,causedbytheterrain
configurationandmanmadeenvironmentsformalog-normal
distribution,i.ethemeanreceivedsignalstrength,r,varieslog-
normallyindBifthesignalstrengthismeasuredoveradistanceof
atleast40.
•Experimentallyithasbeendeterminedthatthestandarddeviation,,
ofthemeanreceivedsignalstrength,r,liesbetween8to12dBwith
thehighergenerallyfoundinlargeurbanareas.
Diversity Antenna Systems
Multipath Propagation
•Multipath propagation causes large and rapid fluctuations in a signal
•These fluctuations are not the same as the propagation path loss.
Multipathcausesthreemajorthings
•Rapidchangesinsignalstrengthoverashortdistanceortime.
•RandomfrequencymodulationduetoDopplerShiftsondifferent
multipathsignals.
•Timedispersioncausedbymultipathdelays
•Thesearecalled“fadingeffects
•Multipathpropagationresultsinsmall-scalefading.
Diversity Antenna Systems
DIVERSITY TECHNIQUE
•Diversitytechniqueshavebeenrecognisedasaneffectivemeans
whichenhancestheimmunityofthecommunicationsystemtothe
multipathfading.GSMthereforeextensivelyadoptsdiversity
techniquesthatinclude
Diversity techniques
Interleaving
In time domain
Frequency Hopping
In Frequency domain
Spatial diversity
In spatial domain
Polarisation diversity
In polarisation domain
Diversity Antenna Systems
DUALPOLARISEDANTENNACONFIGURATIONS
DUAL POLE ANTENNA
TR
TX RX RX
DUAL POLE ANTENNA
SINGLE POLE ANTENNA
RX RX
TX
DUAL POLE ANTENNA
T TR R
TX RXTX RX
INTERFERENCE
WHAT IS INTERFERNCE ?
•Interferenceisthesumofallsignalcontributionsthatareneithernoise
notthewantedsignal.
Co-ChannelInterference
•Somefactorsotherthenreusedistancethatinfluenceco-channel
interferenceareantennatype,directionality,height,sitepositionetc,
•GSMspecifiesC/I>9dB.
Carrier f1 Interferer f1
dB
Distance
C
I
REPEATERS
•Repeaterunitsaredesignedtoreceivesignalsfromadonorsite,
amplifyandrebroadcastthedonorsitessignalsintopoorcoverage
areasortoextendthecoveragerangeofthedonorsite.
•Theserepeaterarebi-directionalanddonottranslatefrequencyand
subsequentlyarelimitedinoutputpowerandgain.
•Repeatersprovidebetween50to80dBofgain.
Donor Cell
INTRODUCTION
Donor side antenna Mobile side antenna
Poor Coverage area
Repeater receives
Donor signal at
~ -90dBm
Repeater amplifies
the signal and
rebroadcasts the
signal
SDHOverviewMultiplexingofSTMframes
STM1 A
STM1 B
STM1 C
STM1 D
4:1
STM4
SDHOverviewMultiplexingofSTMframesFRAME BIT MAX NUMBER OF
FORMAT RATE TELEPHONY CHANNELS
STM - 1 155.52 Mbits/S 1920
STM - 4 622.08 M bits/S 7680
STM - 16 2.488 Gbits/S 30720