Inductive and Deductive Reasoning (1).ppt

faithingggg 113 views 28 slides Apr 28, 2024
Slide 1
Slide 1 of 28
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28

About This Presentation

Modern mathematics


Slide Content

InductiveandDeductiveReasoning

InductiveReasoning
Thetypeofreasoningthatformsaconclusionbasedon
theexaminationofspecificexamples.Theconclusionformed
byusinginductivereasoningisoftencalledaconjecture,
sinceit mayormaynotbecorrect.
Inductivereasoningistheprocessofreachingageneral
conclusionbyexaminingspecificexamples.

ExampleofInductiveReasoningto
predicta number
3,6,9,12,15
Thepatternis
adifferenceof
3
1,3,6,10,15
Thepatternstarts
witha difference of
2then
continuouslyadd
one

ExampleofInductiveReasoningto
predicta number
5,10,15,20,25 2,5,10,17,26,
Thepatternis a difference
of5sothenextnumberis
30.
Thepatternstartswith
a difference of3then
continuously
add2.Nextnumberis37

UseInductiveReasoning
toMakeaConjecture
Considerthefollowingprocedure:Picka number.Multiply
thenumberby8,add6totheproduct,dividethesumby2,and
subtract3.Completetheaboveprocedureforseveral
differentnumbers.Useinductivereasoningtomakeaconjecture
abouttherelationshipbetweenthesizeoftheresultingnumber
andthesizeoftheoriginalnumber.
03

Solution
Originalnumber:5
Multiplyby8:8x5=40
Add6:40+6=46
Divideby2:46/2=23
Subtract3:23-3=20
Westartedwith5andfollowedtheproceduretoproduce20.
Startingwith6asouroriginalnumberproducesafinalresultof24.
Startingwith10producesafinalresultof40.Startingwith100produces
afinalresultof400.Ineachofthesecasestheresultingnumberisfour
timestheoriginalnumber

PENDULUM
Scientists
instance,
inductive
oftenuseinductivereasoning.For
usedGalileoGalilei(1564–1642)
reasoningtodiscoverthatthetime
requiredforapendulumtocompleteoneswing,
calledtheperiodofthependulum,dependsonthe
lengthofthependulum.Galileodidnothave
aclock,
pendulums
sohemeasuredtheperiodsof
in“heartbeats.”Thefollowingtable
showssomeresultsobtainedforpendulumsof
variouslengths.Forthesakeofconvenience,a
lengthof10incheshasbeendesignatedas1unit.

TABLE

Ifapendulumhasalengthof
49units,whatisitsperiod?
Ifthelengthofapendulum is
quadrupled,what happensto
itsperiod?
apendulumwithalengthof4unitshasaperiodthatis
twicethatofapendulumwithalengthof1unit.A
pendulumwithalengthof16unitshasaperiodthat
EXAMPLE
istwicethatofa
Itappears that
pendulumwithalengthof4units.
quadruplingthelengthofa
pendulumdoublesitsperiod.

EXAMPLE
Atsunamiisaseawaveproducedby
anunderwaterearthquake.Theheight
ofa tsunamiasitapproaches
landdependsonthevelocityofthe
tsunami.Usethetableattheleftand
inductivereasoningtoanswereachof
thefollowingquestions.

EXAMPLE
Whathappenstotheheightofatsunami
whenitsvelocityisdoubled?theheight
ofa tsunamiquadrupledif
itsspeedisdoubled.
Whatshouldbetheheightofatsunamiif
itsvelocityis30feetpersecond?100 ft

EXAMPLE
Conclusionsbasedon
inductivereasoningmay
beincorrect.Asan
illustration,considerthe
circlesshownbelow.
Foreachcircle,all
possiblelinesegments
havebeendrawnto
connecteachdotonthe
circlewithalltheother
dotsonthecircle.

EXAMPLE

EXAMPLE
Thereappearstobeapattern.Eachadditional
dotseemstodoublethenumberofregions.Guessthe
maximumnumberofregionsyouexpectfora
circlewithsixdots.Checkyourguessbycountingthe
maximumnumberofregionsformedbytheline
segmentsthatconnectsixdotsonalargecircle.
Yourdrawingwillshowthatforsixdots,themaximum
numberofregionsis31(seethefigureat
theleft),not32asyoumayhaveguessed.Withseven
dotsthemaximumnumberofregionsis57.Thisisa
goodexampletokeepinmind.
Justbecausea patternholdstrueforafew
cases,itdoesnotmeanthepatternwillcontinue.When
youuseinductivereasoning,youhavenoguarantee
thatyourconclusioniscorrect.

Counterexamples
Astatementisatruestatementprovidedthatitis
trueinallcases.Ifyoucan findonecase
forwhichastatementisnottrue,calleda
counterexample,thenthestatementisa false

ExampleofCounterexample
[x]>0
[0]>0
0 > 0 false
√x²=x
√(-3)²=-3false
x²>x
1²>1
1 > 1 false

ExampleofCounterexample
x
x
=1
x+3
=x+1
3
√x²+16=x+4

ExampleofCounterexample
0
0
=1
3+3
=3+1
3
Indeterminate 2=4
√3²+ 16= 3+ 4
Sqrt of 25=7
5 = 7

DeductiveReasoning

DeductiveReasoning
Deductivereasoningisdistinguishedfrominductivereasoningin
that itistheprocessofreachingaconclusionby
applyinggeneralprinciplesand procedures.

Example
Procedure:Pickanumber.Multiplythenumberby8,add 6
totheproduct,dividethesumby2,and subtract3.
Letnrepresenttheoriginalnumber. n
Multiplythenumberby8:
Add6totheproduct:
8n
8n+6
Dividethesumby2: 8n+6
=4n+3
2
4n+3-3=4nSubtract3:

Example
Procedure:Pickanumber.Multiplythenumberby6,add10
totheproduct,dividethesumby2,and subtract5.
Letnrepresenttheoriginalnumber.: n
Multiplythenumberby6:
Add10totheproduct:
6n
6n+10
Dividethesumby2: 6n+10
=3n+5
2
3n+5-5=3nSubtract5:

InductiveReasoning
vs.
DeductiveReasoning

InductiveReasoning
Duringthepast10years,atreehasproducedplums
everyotheryear.Lastyearthetreedidnotproduce
plums,sothisyearthetreewillproduceplums.
Thisargumentreachesaconclusionbasedon
specificexamples,soitisanexampleofinductive
reasoning

InductiveReasoning
IknowIwillwinajackpotonthisslotmachineinthenext10
tries,becauseithasnotpaidoutanymoneyduringthelast
45tries.
Thisargumentreachesaconclusionbasedonspecific
examples,soitisanexampleofinductivereasoning.

DeductiveReasoning
Allhomeimprovementscostmorethantheestimate.The
contractorestimatedthatmyhomeimprovementwillcost
$35,000.Thusmyhomeimprovementwillcostmorethan
$35,000.
Becausetheconclusionisaspecificcaseofageneral
assumption,thisargumentisanexampleofdeductive
reasoning.

DeductiveReasoning
AllJanetEvanovichnovelsareworthreading.
ThenovelTwelveSharpisaJanetEvanovich
novel.ThusTwelveSharpisworthreading.
Becausetheconclusionisaspecificcaseof
ageneralassumption,thisargumentisan
exampleofdeductivereasoning.

“Thereisalwaysareasonfor
everydecisionthatwemake.
Inductiveordeductive…doesn’t
matteraslongasitistheright
decision”
-GodofredoTrajanoTesorio