Infra Red Spectroscopy for M Sc I (SPPU)

5,629 views 127 slides Feb 06, 2019
Slide 1
Slide 1 of 127
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30
Slide 31
31
Slide 32
32
Slide 33
33
Slide 34
34
Slide 35
35
Slide 36
36
Slide 37
37
Slide 38
38
Slide 39
39
Slide 40
40
Slide 41
41
Slide 42
42
Slide 43
43
Slide 44
44
Slide 45
45
Slide 46
46
Slide 47
47
Slide 48
48
Slide 49
49
Slide 50
50
Slide 51
51
Slide 52
52
Slide 53
53
Slide 54
54
Slide 55
55
Slide 56
56
Slide 57
57
Slide 58
58
Slide 59
59
Slide 60
60
Slide 61
61
Slide 62
62
Slide 63
63
Slide 64
64
Slide 65
65
Slide 66
66
Slide 67
67
Slide 68
68
Slide 69
69
Slide 70
70
Slide 71
71
Slide 72
72
Slide 73
73
Slide 74
74
Slide 75
75
Slide 76
76
Slide 77
77
Slide 78
78
Slide 79
79
Slide 80
80
Slide 81
81
Slide 82
82
Slide 83
83
Slide 84
84
Slide 85
85
Slide 86
86
Slide 87
87
Slide 88
88
Slide 89
89
Slide 90
90
Slide 91
91
Slide 92
92
Slide 93
93
Slide 94
94
Slide 95
95
Slide 96
96
Slide 97
97
Slide 98
98
Slide 99
99
Slide 100
100
Slide 101
101
Slide 102
102
Slide 103
103
Slide 104
104
Slide 105
105
Slide 106
106
Slide 107
107
Slide 108
108
Slide 109
109
Slide 110
110
Slide 111
111
Slide 112
112
Slide 113
113
Slide 114
114
Slide 115
115
Slide 116
116
Slide 117
117
Slide 118
118
Slide 119
119
Slide 120
120
Slide 121
121
Slide 122
122
Slide 123
123
Slide 124
124
Slide 125
125
Slide 126
126
Slide 127
127

About This Presentation

Infra Red Spectroscopy


Slide Content

INFRA RED SPECTROSCOPY
Shaikh SirajB.
AbedaInamdarSenior College, Pune
1SIRaJ/MScI/IR

Introduction
•Infraredspectroscopy(IRspectroscopyorvibrationalspectroscopy)
involvestheinteractionofinfraredradiationwithmatter.
•Infrared(IR)spectroscopyisoneofthemostcommonspectroscopic
techniquesusedbyorganicandinorganicchemists.Simply,itisthe
absorptionmeasurementofdifferentIRfrequenciesbyasample
positionedinthepathofanIRbeam..
•ThemaingoalofIRspectroscopicanalysisistodeterminethe
chemicalfunctionalgroupsinthesample.
•DifferentfunctionalgroupsabsorbcharacteristicfrequenciesofIR
radiation.Usingvarioussamplingaccessories,IRspectrometerscan
acceptawiderangeofsampletypessuchasgases,liquids,and
solids.
2SIRaJ/MScI/IR

Regions of EMR
3SIRaJ/MScI/IR

What happens in different regions
Region of Spectrum Wavelength Transition
X-Ray < 200 nm Bond breaking
UV/Visible 200-800 nm Electronic
Infrared 2.5-25 m Vibrational
Microwave > 25 m MW < 1 m Rotational
Radiofrequency 1-5 m NMR/ESR spin change
4SIRaJ/MScI/IR

IR radiations IR radiations
•Theinfraredportionoftheelectromagneticspectrumisusually
dividedintothreeregions;thenear-,mid-andfar-infrared,named
fortheirrelationtothevisiblespectrum.
•Thehigher-energyNearNear--IRIR,approximately14000–4000cm
−1
(0.8–
2.5μmwavelength)canexciteovertoneorharmonicvibrations.
•Themidmid--infraredinfrared,approximately4000–400cm
−1
(2.5–25μm)may
beusedtostudythefundamentalvibrationsandassociated
rotational-vibrationalstructure.
•Thefarfar--infraredinfrared,approximately400–10cm
−1
(25–1000μm),lying
adjacenttothemicrowaveregion
•Inthecontextofinfraredspectroscopy,wavelengthismeasuredin
"wavenumbers",whichhavetheunitscm
-1
5

6
Energy levels
E
N
E
R
G
Y
Electronic level
Rotational level
& translational level
Vibrational level
SIRaJ/MScI/IR

7
Absorption -Energy levels
E
N
E
R
G
Y
E = UV/Vis photon
E = IR photon
E = wave photon
The energies associated with rotational transitions are generally much smaller than
that for vibrationaltransitions and the peaks are found below 300 cm
-1
.
SIRaJ/MScI/IR

IR absorption Process IR absorption Process
Principle:-
•Alltheatomsinmoleculesareincontinuousvibrationwithrespectto
eachother.IfyoudirectedIRradiationtomoleculesexternally,the
frequencyofaspecificvibrationisequaltothefrequencyoftheIR
radiationdirectedonthemolecule,themoleculeabsorbstheradiation.
•Infraredspectroscopyexploitsthefactthatmoleculesabsorbfrequencies
thatarecharacteristicoftheirstructure.
•Theseabsorptionsoccuratresonantfrequencies,i.e.thefrequencyofthe
absorbedradiationmatchesthevibrationalfrequency.
•Theenergyorfrequencyabsorbedservestoincreasetheamplitudeof
thevibrationalmotionsofthebondsinthemolecules.
•Inotherword
•Infraredlightinteractsonlywiththosevibrationswhosedipolemoment
(µ)periodicallychangesduetotheoscillationoftheatom.Iftheoscillating
electromagneticfieldoftheincidentphotoncoupleswiththedipole
oscillatingatthesamefrequency,itisabsorbed.
8SIRaJ/MScI/IR

IR active / Inactive IR active / Inactive
•Notallpossiblevibrationswithinamoleculewillresultinan
absorptionbandintheinfraredregion.
••ToTobebeinfraredinfraredactiveactivethethevibrationvibrationmustmustresultresultininaachangechangeofofdipoledipole
momentmomentduringduringthethevibrationvibration..
•Thismeansthatforhomonucleardiatomicmoleculessuchas
Hydrogen(H2),Nitrogen(N2)andOxygen(O2)noinfrared
absorptionisobserved,asthesemoleculeshavezerodipole
momentandstretchingofthebondswillnotproduceone.
•ForheteronucleardiatomicmoleculessuchCarbonMonoxide(CO)
andHydrogenChloride(HCl),whichdopossessapermanentdipole
moment,infraredactivityoccursbecausestretchingofthisbond
leadstoachangeinndipolemoment
•PolarbondsareassociatedwithstrongIRabsorptionwhile
symmetricalbondsmaynotabsorbatall.
9SIRaJ/MScI/IR

•Itisimportanttorememberthatitisnotnecessaryfor
acompoundtohaveapermanentdipolemomentto
beinfraredactive.
•InthecaseofCarbonDioxide(CO
2)themoleculeis
linearandcentrosymmetricandthereforedoesnot
haveapermanentdipolemoment.
•Thismeansthatthesymmetricstretchwillnotbe
infraredactive.Howeverinthecaseoftheasymmetric
stretchadipolemomentwillbeperiodicallyproduced
anddestroyedresultinginachangingdipolemoment
andthereforeinfraredactivity.
10SIRaJ/MScI/IR

Vibration motion is QuantizedVibration motion is Quantized
11SIRaJ/MScI/IR

Molecular Molecular Vibrations Vibrations
•Foramoleculetoabsorbinfraredradiationit
mustundergoanetchangeindipolemoment
asaresultofvibrationalorrotationalmotion.
•Vibrationscanbesubdividedintotwoclasses,
dependingonwhetherthebondlengthor
angleischanging:
•stretching(symmetricandasymmetric)
•bending(scissoring,rocking,waggingand
twisting)
12SIRaJ/MScI/IR

Fundamental modes of vibration Fundamental modes of vibration
•The major types of molecular vibrations are
stretching and bending.
13SIRaJ/MScI/IR

Stretching vibrationsStretching vibrations
•Inthistypeofvibrations,thebondlengthisincreased
ordecreasedatregularintervals.Therearetwotypes
ofstretchingvibrations.Symmetricalstretchingand
asymmetricaltraining.
•A)Symmetricalstretching-Inthistypeofstretching,
bondlengthincreaseordecreasesymmetrically.
•B)Asymmetricalstretching-Inthistypeofstretching,
lengthofonebondincreasesandtheotherone
decreases.
14SIRaJ/MScI/IR

Fundamental modes of Vibrations-a) Streching
Symmetric
stretching
Antisymmetric
stretching
Direction
Radial
15SIRaJ/MScI/IR

Bending vibrations
•Inthistypeofvibrations,achangeinbondangle
occursbetweenbondswithacommonatom,or
thereisamovementofagroupofatomswith
respecttotheremainderofthemoleculewithout
movementoftheatomsinthegroupwithrespect
tooneanother.
•Thebendingvibrationsarealsocalledas
deformationvibrations.
•Deformationvibrationsareoftwotypes.
•a)In-plane Bending vibrations
•b)Out of plane Bending vibrations
16SIRaJ/MScI/IR

a)Inplanebending-Inthesetypesofvibrations,thereis
achangeinbondangle.Thistypeofbendingtakes
placewithinthesameplane.Inplanebendingareof
twotypes.
•i.Scissoringinwhichbondangledecreases
•ii.Rockinginwhichthebondangleismaintainedbut
bothbondsmoveswithinthesameplane.
b)Outofplanebending-Thistypeofbendingtakesplane
outsideoftheplanofmolecule.
•i.Wagginginwhichbothatomsmovetoonesideof
theplane
ii.Twistinginwhichoneatomisabovetheplaneandthe
otherisbelowtheplane.
17SIRaJ/MScI/IR

Scissoring
bending
Rocking
bending
Wagging
Twisting
Fundamental modes of Vibrations-b) bending
18SIRaJ/MScI/IR

CO
2
Symmetric stretchingAntisymmetricstretching
Scissoring bending
19SIRaJ/MScI/IR

CH
4
Symmetric Stretch
Symmetric Bend
Asymmetric Bend
Asymmetric Stretch
20SIRaJ/MScI/IR

Water
21SIRaJ/MScI/IR

Degrees of freedom
•Simplediatomicmoleculeshaveonlyonebond,whichmaystretch.
•Inpolyatomicmolecules,eachatomhavingathreedegreesoffreedominthreedirectionswhich
areperpendiculartoeachother.Thus,amoleculeofnatomshas3ndegreesoffreedom.
•Foralinearmolecule,twodegreesoffreedomdescriberotationandthreedegreesdescribe
translation,sotheremaining3n-5arenumberoffundamentalvibrations.Whileforanon-linear
molecule,threedegreesoffreedomdescriberotationandthreedegreesdescribetranslation,so
theremaining3n-6arenumberoffundamentalvibrations.
•Eachatomhasthreedegreesoffreedom,correspondingtomotionsalonganyofthethree
Cartesiancoordinateaxes(x,y,z).
•Apolyatomicmoleculeofnatomshas3ntotaldegreesoffreedom.However,3degreesoffreedom
arerequiredtodescribetranslation,themotionoftheentiremoleculethroughspace.Additionally,
3degreesoffreedomcorrespondtorotationoftheentiremolecule.
•Therefore,theremaining3n–6degreesoffreedomaretrue,fundamentalvibrationsfornonlinear
molecules.Linearmoleculespossess3n–5fundamentalvibrationalmodesbecauseonly2degrees
offreedomaresufficienttodescriberotation.Amongthe3n–6or3n–5fundamentalvibrations
(alsoknownasnormalmodesofvibration),thosethatproduceanetchangeinthedipolemoment
mayresultinanIRactivityandthosethatgivepolarizabilitychangesmaygiverisetoRaman
activity.
•Naturally,somevibrationscanbebothIR-andRaman-active.
22SIRaJ/MScI/IR

23
Molecules which produce a change in dipole moment -IR active
Nonlinear molecules 3N-6 degrees of freedom
Linear molecules 3N-5 degrees of freedom
SIRaJ/MScI/IR

Instrumentation
24SIRaJ/MScI/IR

25SIRaJ/MScI/IR

What is FTIR
•Fourier-transforminfraredspectroscopyisavibrational
spectroscopictechnique,meaningittakesadvantageof
asymmetricmolecularstretching,vibration,androtationof
chemicalbondsastheyareexposedtodesignated
wavelengthsoflight.
•Fourier transform is to transform the signal from the time
domain to its representation in the frequency domain
26SIRaJ/MScI/IR

Presentation of Spectra
•IRabsorptioninformationisgenerally
presentedintheformofaspectrumwith
wavelengthorwavenumberasthex-axisand
absorptionintensityorpercenttransmittance
asthey-axis
27SIRaJ/MScI/IR

Agraphisproduced showinghowthepercentage
transmittancevarieswiththefrequencyoftheinfra-red
radiation in cm-1.
28SIRaJ/MScI/IR

n= wavenumbers (cm
-1
)
n
=`
1
l(cm)
l= wavelength (cm)
THE UNIT USED ON AN IR SPECTRUM ISTHE UNIT USED ON AN IR SPECTRUM IS
WAVENUMBERS ( WAVENUMBERS ( n n ))
Wavenumbersare directly proportional to frequency
29
UNIT ( UNIT ( n n ) = cm) = cm--
11
IRabsorptionpositionsaregenerallypresentedaseitherwavenumbers((nn))or
wavelengths(l).
Wavenumberdefinesthenumberofwavesperunitlength.
Thus,wavenumbersaredirectlyproportionaltofrequency,aswellastheenergyof
theIRabsorption.
Thewavenumberunit(cm
–1
,reciprocalcentimeter)ismorecommonlyusedin
modernIRinstrumentsthatarelinearinthecm
–1
scale
SIRaJ/MScI/IR

30
Percent transmission spectrum
%T
0
100
Wavelength ( or frequency )
SIRaJ/MScI/IR

31
A
Wavelength ( or frequency )
Absorbance Spectrum
SIRaJ/MScI/IR

32
%T
0
100
Wavelength ( or frequency )
% A
Absorbance SpectrumPercent transmission
spectrum
0
100
Wavelength ( or frequency )
SIRaJ/MScI/IR

Band or peak Intensities
33SIRaJ/MScI/IR

•Theintensityofanabsorptionbanddepends
onthesizeofthechangeindipolemoment
associatedwiththevibration:Thegreaterthe
changeindipolemoment,themoreintense
theabsorption
34SIRaJ/MScI/IR

Bond properties & Absorption peaks
Bond properties Vs Frequency
•Bondpropertiessuchasbondlength,force
constantofbondandmassesofbonded
atomsaffecttheinfraredIRabsorption
frequency
35SIRaJ/MScI/IR

The natural frequency of vibration of a
bond is given by equation-(Hooke’s Law)
36SIRaJ/MScI/IR

37
Hooke’s Law
k = force constant dyne/cm
SIRaJ/MScI/IR

=
1
2pc
n
K

larger K,
higher frequency
larger atom masses,
lower frequency
constants
n 
From above equation wavenumberi.e. frequencry
Force constant (K)
n 
Reduced masses of atom()
As force constant increases, frequency also increases.
Stronger the bond or shorter the bond length then higher the frequency to vibrate the bond
As masses of atoms increases, frequency also decreases.
Smaller atoms required higher frequency to vibrate the bond, vice versa
1
38SIRaJ/MScI/IR

2150 1650 1200
C=C > C=C > C-C=
increasing K
K = force constant (in dynes / cm)
•for single bond: K = 5 x 10
5
dynes/cm
•for double bond: K = 10 x 10
5
dynes/cm
•for triple bond: K = 15 x 10
5
dynes/cm
C-H > C-C > C-O > C-Cl > C-Br
3000 1200 1100 750 650
increasing 
39
SIRaJ/MScI/IR

40
1.Forastrongerbond(largerkvalue),nincreases
Increasingbondstrength
CCbonds CHbonds
C-C (1200cm
-1
), C-C-H(2900cm
-1
)
C=C (1650cm
-1
) C=C-H(3100cm
-1
)
CC (2150cm
-1
) CC-H(3300cm
-1
)
2.Forheavieratomsattached(largermvalue),ndecreases
Increasingreducedmasscompare
C-H (3000cm
-1
)
C-C (1200cm
-1
)
C-Cl (750cm
-1
)
C-Br (650cm
-1
)
C-I (about500cm
-1
)
SIRaJ/MScI/IR

41SIRaJ/MScI/IR

42
•Functionalgroupregion4000-1500cm
-1
•Fingerprintregion 650-1500cm
-1
IR Spectrum
SIRaJ/MScI/IR

43SIRaJ/MScI/IR

Regions in IR spectrum
A) Functional Group Region
•TheFunctionalGroupRegion,4000to1300cm
–1
•Theappearanceofstrongabsorptionbandsintheregionof4000to
2500cm–1usuallycomesfromstretchingvibrationsbetween
hydrogenandsomeotheratomswithamassof19orless.
•TheO-HandN-Hstretchingfrequenciesfallinthe3700to2500
cm–1region,withvariousintensities.Hydrogenbondinghasa
significantinfluenceonthepeakshapeandintensity,generally
causingpeakbroadeningandshiftsinabsorptiontolower
frequencies.TheCHstretchingbandsoccurintheregionof3300to
2800cm–1.TheacetylenicC-Hexhibitsstrongabsorptionatabout
3300cm–1.AlkeneandaromaticC-Hstretchvibrationsabsorbat
3100to3000cm–1.Mostaliphatic(saturated)C-Hstretchingbands
occurat3000to2850cm–1,withgenerallyprominentintensities
thatareproportionaltothenumberofC-Hbonds.Aldehydesoften
showtwosharpaldehydicC-Hstretchingabsorptionbandsat2900
to2700cm–1.
44SIRaJ/MScI/IR

•The1950to1450cm–1regionexhibitsIRabsorptionfromawidevarietyof
double-bondedfunctionalgroups..
•AlmostallthecarbonylC=Ostretchingbandsarestrongandoccurat1870to1550
cm–1.AcidchloridesandacidanhydridesgiverisetoIRbandsat1850to1750
cm–1.Whereasketones,aldehydes,carboxylicacids,amides,andestersgenerally
showIRabsorptionat1750to1650cm–1,carboxylateionsusuallydisplay
stretchingbandsat1610to1550and1420to1300cm-1.
•Conjugation,ringsize,hydrogenbonding,andstericandelectroniceffectsoften
resultinsignificantshiftsinabsorptionfrequencies.
•NonconjugatedaliphaticC=CandC=Nhaveabsorptionbandsat1690to1620cm–
1,withvariableintensities.
•Aromaticcompoundscontaindelocalizedpelectronsfromtheresonance-
stabilizeddoublebonds,showingskeletalvibrations(includingC-Cstretchings
withinthering)inthe1650to1400cm–1regionandweakcombinationand
overtonebandsinthe2000to1650cm–1region.
•Valuableinformationaboutthesubstitutionpatternonanaromaticringcanbe
obtainedbycarefulexaminationofabsorptionbandsinthesetworegions.
MoleculescontainingNO2groups,suchasnitrocompounds,nitrates,and
nitramines,commonlyexhibitasymmetricandsymmetricstretchingvibrationsof
theNO2groupat1660to1500and1390to1260cm–1regions.
45SIRaJ/MScI/IR

B) Fingerprint Region
•TheFingerprintRegion,1300to910cm
–1
•Absorptionsinthisregionincludethecontributionsfrom
complexinteractingvibrations,givingrisetothegenerally
uniquefingerprintforeachcompound.
•AgoodmatchbetweentheIRspectraoftwocompoundsin
allfrequencyranges,particularlyinthefingerprintregion,
stronglyindicatesthattheyhavethesamemolecular
structures.
•DetailedinterpretationofIRbandsinthisregionisdifficult.
However,someassignmentsofbandsinthefingerprint
regiontoafewimportantvibrationalfrequenciesof
functionalgroupscanbedonewhenIRabsorptionsinother
regionsarecorrelatedtogether.
46SIRaJ/MScI/IR

b) FINGERPRINT REGION
AlthoughtheentireIRspectrumcanbeusedasafingerprintforthepurposesofcomparing
molecules,the600-1400cm
-1
rangeiscalledthefingerprintregion.Thisisnormallya
complexareashowingmanybands,frequentlyoverlappingeachother.Thiscomplexity
limitsitsusetothatofafingerprint,andshouldbeignoredbybeginnerswhenanalyzing
thespectrum.Asachemist,youshouldfocusyouranalysisontherestofthespectrum,
thatistheregiontotheleftof1400cm
-1
.
Fingerprint region: complex and difficult to
interpret reliably.
Focus your analysis on this region. This is where most stretching
frequencies appear.
47SIRaJ/MScI/IR

48
1.Overtones
2.Combination bands
3.Coupling bands
4.Fermi Resonance
Spurious bands appearing in the
IR spectrum
SIRaJ/MScI/IR

Overtones
•Invibrationalspectroscopy,anovertonebandisthespectralbandthat
occursinavibrationalspectrumofamoleculewhenthemoleculemakesa
transitionfromthegroundstate(v=0)tothesecondexcitedstate(v=2),
•Thetotalnumberofobservedabsorptionbandsisgenerallydifferentfrom
thetotalnumberoffundamentalvibrations.
•Excitationfromgroundstatetohigherenergystates,whichcorresponds
integralmultiplesofthefrequencyofthefundamental(v).
•overtonesoccursatintegralmultiplesofthefundamentalabsorption
frequencies),Weakovertonebandscouldoccurat2v,3v,….
•Overtones occur at twice the frequency (2n) of a
fundamental vibration
49SIRaJ/MScI/IR

Overtones occur at twice the frequency (2n) of a fundamental
vibration
22--ButanoneButanone
CH
3
CCH
2
CH
3
O
C=O
C-H
CH bend
3438
overtone of strong C=O peak
1719 x 2 = 3438
50SIRaJ/MScI/IR

51SIRaJ/MScI/IR

Combination bands
•Combinationbandsareofweakintensity
andoccurwhentwofundamentalbands
coupletogivebandsat(n
1+n
2)or(n
1-n
2)
•Twovibrationalfrequencies(v
1andv
2)inamolecule
coupletogiverisetoanewinfraredactivefrequency.
Thisbandisthesumofthetwointeractingbands
(v
combination=v
1+v
2).
•combinationbandsareobservedwhenmorethantwo
ormorefundamentalvibrationsareexcited
simultaneously.
52SIRaJ/MScI/IR

53
Combination bands are of weak intensity and occur when two
fundamental bands couple to give bands at (n
1+ n
2)or (n
1-n
2)
ChlorobenzeneChlorobenzene
Cl
C-Cl
benzene
C=C
benzene ring
combination
bands
SIRaJ/MScI/IR

54
Combination bands
IR Spectrum of Butyramide
NH
2
O
Hence, combination bands are not of diagnostic
value in IR interpretation.
SIRaJ/MScI/IR

Couplingbandsoccurswhentwosimilarfunctionalgroupsareinclose
proximityandtheyhavestrongfundamentalabsorptions.
Coupling bands
55SIRaJ/MScI/IR

56
Coupling bands occurs when two similar functional groups
are in close proximity and they have strong fundamental
absorptions.
IR Spectrum of Benzoic anhydride
O
O O
SIRaJ/MScI/IR

Fermi Resonance
•Whenafundamentalvibrationcoupleswithan
overtoneorcombinationband,thecoupledvibrationis
calledFermiresonance.Fermiresonanceisoften
observedincarbonylcompounds.
•Fermiresonanceresultsinthesplittingoftwo
vibrationalbandsthathavenearlythesameenergy
andsymmetryinbothIRandRamanspectroscopies.
•Thetwobandsareusuallyafundamentalvibrationand
eitheranovertoneorcombinationband
57SIRaJ/MScI/IR

58
Fermi Resonance occurs when a fundamental vibration
couples with a combination band or an overtone.
IR Spectrum of Benzoyl chloride
O
Cl
SIRaJ/MScI/IR

Important functional group & IR
frequency
59SIRaJ/MScI/IR

60SIRaJ/MScI/IR

61SIRaJ/MScI/IR

Alkane
62SIRaJ/MScI/IR

3000 divides
UNSATURATED
SATURATED
•C-H spstretch ~ 3300 cm
-1
•C-H sp
2
stretch > 3000 cm
-1
•C-H sp
3
stretch < 3000 cm
-1
The C-H stretching region
BASE VALUE = 3000 cm
-1
63SIRaJ/MScI/IR

64
HexaneHexane
CH
3
CH
2
CH
2
CH
2
CH
2
CH
3
CH
stretching
vibrations
ALKANE
includes
CH
3
sym and asym
CH
2
sym and asym
CH bending vibrations
discussed shortly
SIRaJ/MScI/IR

65
Hexane
CH
3
CH
2
CH
2
CH
2
CH
2
CH
3
CH
stretch
CH
2
bend
CH
3
bend
CH
2
rocking
> 4C
ALKANE
SIRaJ/MScI/IR

Alkene C=C
•Normal charecteristicC=C frequency occurs at 1620-
1640 cm
-1
•Aromatic C=C frequency occurs at range of 1400-1500
cm
-1
•Exocyclicdouble bond variable absorption frequency
depending on ring.
66SIRaJ/MScI/IR

67
11--HexeneHexene
CH
2
CHCH
2
CH
2
CH
2
CH
3
=CH
CH
C=C
CH
2
CH
3
bend
CH oops
ALKENE
SIRaJ/MScI/IR

68
TolueneToluene
CH
3C=C
benzene
CH
3
Ar-H oops
Ar-H
AROMATIC
SIRaJ/MScI/IR

ExoC=C bonds
69SIRaJ/MScI/IR

Endo double bond
70SIRaJ/MScI/IR

Alkynes C≡C
•C≡C alkynes at 2100-2150 cm
-1
•C≡C-H terminal C-H at 3300
cm-1
•If any compundhave this two peak in IR, the
compundhaving terminal alkynegroup
71SIRaJ/MScI/IR

72
11--HexyneHexyne
CH CCH
2
CH
2
CH
2
CH
3
C=C=
=C-H=
C-H
CH
2, CH
3
ALKYNE
SIRaJ/MScI/IR

Carbonyl –C=O
73SIRaJ/MScI/IR

74
CR
O
H
CR
O
O
CR
O
CR
O
Cl
CR
O
OR'
CR
O
R
CR
O
NH
2
CR
O
OH
169017101715172517351800
1810 and 1760
BASE
VALUE
acid
chloride ester aldehyde
carboxylic
acid amideketone
anhydride
( two peaks )
EACH DIFFERENT KIND OF C=O COMES AT A DIFFERENT FREQUENCY
C=O IS SENSITIVE TO ITS ENVIRONMENTC=O IS SENSITIVE TO ITS ENVIRONMENT
THESE VALUES ARE
WORTH LEARNING
all are +/-10 cm
-1
SIRaJ/MScI/IR

Every type of carbonyl compound has other places you can look to confirm
your conclusion based on
frequency alone.
CONFIRMATION OF FUNCTIONAL GROUPCONFIRMATION OF FUNCTIONAL GROUP
RC
O
H
C=O at 1725 cm
-1
also look for aldehyde CH
2850 and 2750 cm-1
RC
O
OH
C=O at 1710 cm
-1
also look for OH
(H-bonded) and
C-O ~1200 cm-1
RC
O
NH
H
C=O at 1690 cm
-1
also look for two
NH peaks at
3400 cm-1
RC
O
OR'
C=O at 1735 cm
-1
also look for two
C-O at 1200 and
1000 cm-1
Ketoneshave C=O at 1715 cm
-1
and no NH, OH, C-O or -CHO
Anhydrides have twoC=O peaks near 1800 cm
-1
and two C-O
75SIRaJ/MScI/IR

Aldehyde
•C-H aldehyde, two peaks (both weak)
~ 2850 and 2750 cm
-1
76SIRaJ/MScI/IR

Ketone
77SIRaJ/MScI/IR

78SIRaJ/MScI/IR

Ring Strained & IR frequency
79SIRaJ/MScI/IR

Ester
80SIRaJ/MScI/IR

Amide
81SIRaJ/MScI/IR

82SIRaJ/MScI/IR

Factor affecting IR frequency
83SIRaJ/MScI/IR

+I & -I
84SIRaJ/MScI/IR

Ring size
•Underidealconditionsthecarbonatomofacarbonylgroupis
essentiallysp2hybridized,whichimpliesthatthebondangleswill
be120°andtheC-Osigmabondhas33%s-character.
•Ifthisgroupisincorporatedinasmallring,theC-CO-Cbondangleis
reducedto108°(5-memberedring),90°(4-memberedring)or60°
(3-memberedring).
•Whenthishappens,theC-Cbondsoftheringassumegreaterp-
characterandtheC-Osigmabondhascorrespondinglygreaters-
character.Thedoublebondofthecarbonylgroupistherefore
shorterandstronger,andexhibitsalargerstretchingfrequency.
85SIRaJ/MScI/IR

86SIRaJ/MScI/IR

Conjugation or +R effect
87SIRaJ/MScI/IR

•Conjugationextendsthedipolarcharacterofthecarbonyl
grouptothedoublebond(oraromaticring)sothatthe
beta-carbonatomsharesthepositivecharacterofthe
carbonylcarbon.Asillustratedbythefollowingresonance
equation,thisthecarbonyldoublebondhasslightlymore
singlebondcharacterthandoesanunconjugatedfunction.
Thebondenergy(andforceconstant-f)oftheconjugated
C=Ogroupiscorrespondinglyreduced,andthisresultsina
lowerstretchingfrequency.
88SIRaJ/MScI/IR

89SIRaJ/MScI/IR

•Electronwithdrawinggroupshaveanopposite
influence,andincreasethestretchingfrequencyofthe
carbonylgroup.Trichloroacetaldehyde(leftbelow)
providesagoodexample.
•Electrondonatingsubstituentsonthecarbonylgroup
stabilizetheionicresonancecontributor,andincrease
thesinglebondcharacteroftheC=Obond.The
stretchingfrequencyisthereforedecreased,asnoted
intherighthandexamplebelow.
90SIRaJ/MScI/IR

Ester
91SIRaJ/MScI/IR

92SIRaJ/MScI/IR

Ester with cross conjugations
93SIRaJ/MScI/IR

Acid chlorides
94SIRaJ/MScI/IR

Anhydrides
95SIRaJ/MScI/IR

EAA
96SIRaJ/MScI/IR

97SIRaJ/MScI/IR

1715174517801815
1690
RING STRAIN CONJUGATION
CONJUGATION AND RING SIZE EFFECTSCONJUGATION AND RING SIZE EFFECTS
1705
CR
O
R
CR
O
CHCH2
CR
O
OOOO O
normal
aliphatic
ketones
98SIRaJ/MScI/IR

99
O O
N
H
O
O O
O O
1735
1660
1735
1760
O O
N
H
O
O O
O O
1770
1705
1770
1800
O
O
NH
O
1820
1745
SIRaJ/MScI/IR

100SIRaJ/MScI/IR

101SIRaJ/MScI/IR

Field effect
102SIRaJ/MScI/IR

--halo halo ketoketorulerule
•See in Field effect….
103SIRaJ/MScI/IR

Amines
104SIRaJ/MScI/IR

Nitro –NO
2
•TheN–Ostretchingvibrationsinnitroalkanesoccur
near1550cm
-1
(asymmetrical)and
• 1350cm
-1
(symmetrical),
•thebandat1550cm
-1
beingthestrongerofthetwo.
•ifthenitrogroupisattachedtoanaromaticring,
theN–Ostretchingbandsshifttodowntoslightly
lowerwavenumbers
105SIRaJ/MScI/IR

-OH
106SIRaJ/MScI/IR

•TheO–Hbandsoccurathigherfrequency,sometimesasasharp
absorptionatabout3600cm
–1
.Moreoften,youwillseeabroad
absorptionatanywherefrom3500to2900cm
–1
.Thisisbecause
OHgroupsformstronghydrogenbondsthatvaryinlengthand
strength.Thesharpabsorptionat3600cm–1isthenon-hydrogen-
bondedOHandthelowertheabsorptionthestrongertheHbond.
•Alcoholsformhydrogenbondsbetweenthehydroxyloxygenofone
moleculeandthehydroxylhydrogenofanother.Thesebondsare
variableinlength(thoughtheyareusuallyratherlongerthan
normalcovalentO–Hbonds)andtheyslightlyweakenthetrue
covalentO–Hbondsbyvaryingamounts.Whenabondvariesin
lengthandstrengthitwillhavearangeofstretchingfrequencies
distributedaboutameanvalue.Alcoholstypicallygivearounded
absorptionatabout3300cm–1
107SIRaJ/MScI/IR

Hydrogen bonding
108SIRaJ/MScI/IR

Carboxylic -COOH
•Carboxylicacids(RCO2H)formhydrogen-bonded
dimerswithtwostrongHbondsbetweenthe
carbonyloxygenatomofonemoleculeandthe
acidichydrogenoftheother.Thesealsovary
considerablyinlengthandstrengthandusually
giveverybroadV-shapedabsorbances.
109SIRaJ/MScI/IR

Free -OH and bonded -OH
110SIRaJ/MScI/IR

Effect of solvent on –OH frequency
111SIRaJ/MScI/IR

Ether REther R--OO--R or R or CC--OO
1100 to 1200 cm
-1
112SIRaJ/MScI/IR

Nitrite Nitrite --C≡C≡NN
2210 to 2250 cm
-1
113SIRaJ/MScI/IR

Aromatic & substituents
•In between following values
•1400 cm
-1
•1500 cm
-1
•1600 cm
-1
114SIRaJ/MScI/IR

Applications
115SIRaJ/MScI/IR

Questions
116SIRaJ/MScI/IR

Arrange by Increasing order of IR frequency
117SIRaJ/MScI/IR

Decreasing order of Carbonyl frequency
SIRaJ/MScI/IR 118

SIRaJ/MScI/IR 119

Progress of reaction / Monitor of reactions
120SIRaJ/MScI/IR

SIRaJ/MScI/IR 121

Distinguish by IR spectroscopy
SIRaJ/MScI/IR 122

SIRaJ/MScI/IR 123

SIRaJ/MScI/IR 124

125SIRaJ/MScI/IR

SIRaJ/MScI/IR 126

•predict which will have the highest carbonyl
stretching frequency and which will have the
lowest carbonyl stretching frequency. Explain
your reasoning.
127SIRaJ/MScI/IR