Infrared spectroscopy

blackdevilvikas 12,206 views 51 slides Mar 13, 2015
Slide 1
Slide 1 of 51
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30
Slide 31
31
Slide 32
32
Slide 33
33
Slide 34
34
Slide 35
35
Slide 36
36
Slide 37
37
Slide 38
38
Slide 39
39
Slide 40
40
Slide 41
41
Slide 42
42
Slide 43
43
Slide 44
44
Slide 45
45
Slide 46
46
Slide 47
47
Slide 48
48
Slide 49
49
Slide 50
50
Slide 51
51

About This Presentation

Infrared spectroscopy (IR spectroscopy) is the spectroscopy that deals with the infrared region of the electromagnetic spectrum, that is light with a longer wavelength and lower frequency than visible light. It covers a range of techniques, mostly based on absorption spectroscopy.


Slide Content

Spectroscopy
Infrared Spectra

Infrared spectra in this presentation are taken by
permission from the SDBS web site:
SDBSWeb: http://www.aist.go.jp/RIODB/SDBS/

?????????????????

Spectroscopy
“seeing the unseeable”
Using electromagnetic radiation as a probe to
obtain information about atoms and molecules
that are too small to see.
Electromagnetic radiation is propagated at the
speed of light through a vacuum as an oscillating
wave.

electromagnetic relationships:
λυ = c λ µ 1/υ
E = hυ E µ υ
E = hc/λ E µ 1/λ
λ = wave length
υ = frequency
c = speed of light
E = kinetic energy
h = Planck’s constant
λ
c

Two oscillators will strongly interact when their
energies are equal.

E
1
= E
2
λ
1
= λ
2
υ
1
= υ
2

If the energies are different, they will not strongly interact!
We can use electromagnetic radiation to probe atoms and
molecules to find what energies they contain.

some electromagnetic radiation ranges
Approx. freq. rangeApprox. wavelengths
Hz (cycle/sec) meters
Radio waves 10
4
- 10
12
3x10
4
- 3x10
-4
Infrared (heat) 10
11
- 3.8x10
14
3x10
-3
- 8x10
-7
Visible light 3.8x10
14
- 7.5x10
14
8x10
-7
- 4x10
-7
Ultraviolet 7.5x10
14
- 3x10
17
4x10
-7
- 10
-9
X rays 3x10
17
- 3x10
19
10
-9
- 10
-11
Gamma rays > 3x10
19
< 10
-11
 

Infrared radiation
λ = 2.5 to 17 μm
υ = 4000 to 600 cm
-1
These frequencies match the frequencies of covalent bond
stretching and bending vibrations. Infrared spectroscopy
can be used to find out about covalent bonds in molecules.
IR is used to tell:
1. what type of bonds are present
2. some structural information

IR source  sample  prism  detector

graph of % transmission vs. frequency
=> IR spectrum

4000 3000 2000 1500 1000 500
v (cm
-1
)
100
%T
0

toluene

Some characteristic infrared absorption frequencies

BOND COMPOUND TYPE FREQUENCY RANGE, cm
-1

C-H alkanes 2850-2960 and 1350-1470

alkenes 3020-3080 (m) and

RCH=CH2 910-920 and 990-1000

R2C=CH2 880-900

cis-RCH=CHR 675-730 (v)

trans-RCH=CHR 965-975

aromatic rings 3000-3100 (m) and

monosubst. 690-710 and 730-770

ortho-disubst. 735-770

meta-disubst. 690-710 and 750-810 (m)

para-disubst. 810-840 (m)

alkynes 3300


O-H alcohols or phenols 3200-3640 (b)


C=C alkenes 1640-1680 (v)

aromatic rings 1500 and 1600 (v)


C≡C alkynes 2100-2260 (v)


C-O primary alcohols 1050 (b)

secondary alcohols 1100 (b)

tertiary alcohols 1150 (b)

phenols 1230 (b)

alkyl ethers 1060-1150

aryl ethers 1200-1275(b) and 1020-1075 (m)


all abs. strong unless marked: m, moderate; v, variable; b, broad

IR spectra of ALKANES
C—H bond “saturated”
(sp
3
) 2850-2960 cm
-1
+ 1350-1470 cm
-1
-CH
2
- + 1430-1470
-CH
3
+ “ and 1375
-CH(CH
3
)
2
+ “ and 1370, 1385
-C(CH
3
)
3
+ “ and 1370(s), 1395 (m)

n-pentane
CH
3
CH
2
CH
2
CH
2
CH
3
3000 cm
-1
1470 &1375 cm
-1
2850-2960 cm
-1
sat’d C-H

CH
3
CH
2
CH
2
CH
2
CH
2
CH
3
n-hexane

2-methylbutane (isopentane)

2,3-dimethylbutane

cyclohexane
no 1375 cm
-1
no –CH
3

IR of ALKENES
=C—H bond, “unsaturated” vinyl
(sp
2
) 3020-3080 cm
-1
+ 675-1000
RCH=CH
2
+910-920 & 990-1000
R
2
C=CH
2
+880-900
cis-RCH=CHR +675-730 (v)
trans-RCH=CHR +965-975
C=C bond 1640-1680 cm
-1
(v)

1-decene
910-920 &
990-1000
RCH=CH
2
C=C 1640-1680
unsat’d
C-H
3020-
3080
cm
-1

4-methyl-1-pentene
910-920 &
990-1000
RCH=CH
2

2-methyl-1-butene
880-900
R
2
C=CH
2

2,3-dimethyl-1-butene
880-900
R
2
C=CH
2

IR spectra BENZENEs
=C—H bond, “unsaturated” “aryl”
(sp
2
) 3000-3100 cm
-1
+ 690-840
mono-substituted +690-710, 730-770
ortho-disubstituted + 735-770
meta-disubstituted + 690-710, 750-810(m)
para-disubstituted + 810-840(m)
C=C bond 1500, 1600 cm
-1

ethylbenzene
690-710,
730-770
mono-
1500 & 1600
Benzene ring
3000-
3100
cm
-1
Unsat’d
C-H

o-xylene
735-770
ortho

p-xylene
810-840(m)
para

m-xylene
meta
690-710,
750-810(m)

styrene
no sat’d C-H
910-920 &
990-1000
RCH=CH
2
mono
1640
C=C

2-phenylpropene
mono
880-900
R
2
C=CH
2
Sat’d C-H

p-methylstyrene
para

IR spectra ALCOHOLS & ETHERS
C—O bond 1050-1275 (b) cm
-1
1
o
ROH 1050
2
o
ROH 1100
3
o
ROH 1150
ethers 1060-1150
O—H bond 3200-3640 (b) 

1-butanol
CH
3
CH
2
CH
2
CH
2
-OH
C-O 1
o
3200-3640 (b) O-H

2-butanol
C-O 2
o
O-H

tert-butyl alcohol
C-O 3
o
O-H

methyl n-propyl ether
no O--H
C-O ether

2-butanone
 C=O
~1700 (s)

C
9
H
12
C-H unsat’d &
sat’d
1500 & 1600
benzene
mono
C
9
H
12
– C
6
H
5
= -C
3
H
7
isopropylbenzene
n-
propylbenzene?

n-propylbenzene

isopropyl split 1370 + 1385
isopropylbenzene

C
8
H
6
C-H
unsat’d
1500, 1600
benzene
mono
C
8
H
6
– C
6
H
5
= C
2
H
phenylacetylene
3300
ºC-H

C
4
H
8
1640-
1680
C=C
880-900
R
2
C=CH
2
isobutylene CH
3
CH
3
C=CH
2
Unst’d

Which compound is this?
a)2-pentanone
b)1-pentanol
c)1-bromopentane
d)2-methylpentane
1-pentanol

What is the compound?
a)1-bromopentane
b)1-pentanol
c)2-pentanone
d)2-methylpentane
2-pentanone

H
2
CC
H
CH
2
CH
3
CH
3
CH
3CH
2CH
2CH
2CH
3
H
2
C
H
2
C
CH
2CH
2CH
2CH
3
biphenyl allylbenzene 1,2-diphenylethane
o-xylene
n-pentane n-butylbenzene
A
B
C
D
E
F
In a “matching” problem, do not try to fully analyze each spectrum. Look
for differences in the possible compounds that will show up in an infrared
spectrum.

1

2

3

4

5

6