Integral table

bags07 28,075 views 5 slides Jan 18, 2011
Slide 1
Slide 1 of 5
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5

About This Presentation

INtegral


Slide Content

Table of Integrals

Basic Forms
Z
x
n
dx=
1
n+ 1
x
n+1
+c (1)
Z
1
x
dx= lnx+c (2)
Z
udv=uv
Z
vdu (3)
Z
1
ax+b
dx=
1
a
lnjax+bj+c (4)
Integrals of Rational Functions
Z
1
(x+a)
2
dx=
1
x+a
+c (5)
Z
(x+a)
n
dx=
(x+a)
n+1
n+ 1
+c; n6=1 (6)
Z
x(x+a)
n
dx=
(x+a)
n+1
((n+ 1)xa)
(n+ 1)(n+ 2)
+c(7)
Z
1
1 +x
2
dx= tan
1
x+c (8)
Z
1
a
2
+x
2
dx=
1
a
tan
1
x
a
+c (9)
Z
x
a
2
+x
2
dx=
1
2
lnja
2
+x
2
j+c (10)
Z
x
2
a
2
+x
2
dx=xatan
1
x
a
+c (11)
Z
x
3
a
2
+x
2
dx=
1
2
x
2

1
2
a
2
lnja
2
+x
2
j+c (12)
Z
1
ax
2
+bx+c
dx=
2
p
4acb
2
tan
1
2ax+b
p
4acb
2
+C(13)
Z
1
(x+a)(x+b)
dx=
1
ba
ln
a+x
b+x
; a6=b(14)
Z
x
(x+a)
2
dx=
a
a+x
+ lnja+xj+C (15)
Z
x
ax
2
+bx+c
dx=
1
2a
lnjax
2
+bx+cj

b
a
p
4acb
2
tan
1
2ax+b
p
4acb
2
+C(16)
Integrals with Roots
Z
p
xadx=
2
3
(xa)
3=2
+C (17)
Z
1
p
xa
dx= 2
p
xa+C (18)
Z
1
p
ax
dx= 2
p
ax+C (19)
Z
x
p
xadx=
2
3
a(xa)
3=2
+
2
5
(xa)
5=2
+C (20)
Z
p
ax+bdx=

2b
3a
+
2x
3

p
ax+b+C (21)
Z
(ax+b)
3=2
dx=
2
5a
(ax+b)
5=2
+C (22)
Z
x
p
xa
dx=
2
3
(x2a)
p
xa+C (23)
Zr
x
ax
dx=
p
x(ax)
atan
1
p
x(ax)
xa
+C (24)
Zr
x
a+x
dx=
p
x(a+x)
aln
p
x+
p
x+a

+C (25)
Z
x
p
ax+bdx=
2
15a
2
(2b
2
+abx+ 3a
2
x
2
)
p
ax+b+C (26)
Z
p
x(ax+b)dx=
1
4a
3=2
h
(2ax+b)
p
ax(ax+b)
b
2
ln


a
p
x+
p
a(ax+b)



i
+C(27)
Z
p
x
3
(ax+b)dx=

b
12a

b
2
8a
2
x
+
x
3

p
x
3
(ax+b)
+
b
3
8a
5=2
ln


a
p
x+
p
a(ax+b)


+C(28)

c2007. From http://integral-table.com, last revised December 6, 2007. This material is provided as is without warranty or representation
about the accuracy, correctness or suitability of this material for any purpose. Some restrictions on use and distribution may apply, including the
terms of the Creative Commons Attribution-Noncommercial-Share Alike 3.0 Unported License. See the web site for details. The formula numbers
on this document may be dierent from the formula numbers on the web page.
1

Z
p
x
2
a
2
dx=
1
2
x
p
x
2
a
2

1
2
a
2
ln


x+
p
x
2
a
2


+C (29)
Z
p
a
2
x
2
dx=
1
2
x
p
a
2
x
2
+
1
2
a
2
tan
1
x
p
a
2
x
2
+C (30)
Z
x
p
x
2
a
2
dx=
1
3

x
2
a
2

3=2
+C (31)
Z
1
p
x
2
a
2
dx= ln


x+
p
x
2
a
2


+C (32)
Z
1
p
a
2
x
2
dx= sin
1
x
a
+C (33)
Z
x
p
x
2
a
2
dx=
p
x
2
a
2
+C (34)
Z
x
p
a
2
x
2
dx=
p
a
2
x
2
+C (35)
Z
x
2
p
x
2
a
2
dx=
1
2
x
p
x
2
a
2

1
2
a
2
ln


x+
p
x
2
a
2


+C (36)
Z
p
ax
2
+bx+cdx=
b+ 2ax
4a
p
ax
2
+bx+c
+
4acb
2
8a
3=2
ln


2ax+b+ 2
p
a(ax
2
+bx
+
c)


+C(37)
Z
x
p
ax
2
+bx+c=
1
48a
5=2

2
p
a
p
ax
2
+bx+c


3b
2
+ 2abx+ 8a(c+ax
2
)

+3(b
3
4abc) ln


b+ 2ax+ 2
p
a
p
ax
2
+bx+x




(38)
Z
1
p
ax
2
+bx+c
dx=
1
p
a
ln


2ax+b+ 2
p
a(ax
2
+bx+c)


+C (39)
Z
x
p
ax
2
+bx+c
dx=
1
a
p
ax
2
+bx+c
+
b
2a
3=2
ln


2ax+b+ 2
p
a(ax
2
+bx+c)


+C (40)
Integrals with Logarithms
Z
lnaxdx=xlnaxx+C (41)
Z
lnax
x
dx=
1
2
(lnax)
2
+C (42)
Z
ln(ax+b)dx=

x+
b
a

ln(ax+b)x+C; a6= 0 (43)
Z
ln

a
2
x
2
b
2

dx=xln

a
2
x
2
b
2

+
2b
a
tan
1
ax
b
2x+C (44)
Z
ln

a
2
b
2
x
2

dx=xln

arb
2
x
2

+
2a
b
tan
1
bx
a
2x+C (45)
Z
ln

ax
2
+bx+c

dx=
1
a
p
4acb
2
tan
1
2ax+b
p
4acb
2
2x+

b
2a
+x

ln

ax
2
+bx+c

+C (46)
Z
xln(ax+b)dx=
bx
2a

1
4
x
2
+
1
2

x
2

b
2
a
2

ln(ax+b) +C (47)
Z
xln

a
2
b
2
x
2

dx=
1
2
x
2
+
1
2

x
2

a
2
b
2

ln

a
2
b
2
x
2

+C(48)
Integrals with Exponentials
Z
e
ax
dx=
1
a
e
ax
+C (49)
Z
p
xe
ax
dx=
1
a
p
xe
ax
+
i
p

2a
3=2
erf

i
p
ax

+C;
where erf(x) =
2
p

Z
x
0
e
t
2
dtet (50)
Z
xe
x
dx= (x1)e
x
+C (51)
Z
xe
ax
dx=

x
a

1
a
2

e
ax
+C (52)
Z
x
2
e
x
dx=

x
2
2x+ 2

e
x
+C (53)
2

Z
x
2
e
ax
dx=

x
2
a

2x
a
2
+
2
a
3

e
ax
+C (54)
Z
x
3
e
x
dx=

x
3
3x
2
+ 6x6

e
x
+C (55)
Z
x
n
e
ax
dx= (1)
n
1
a
[1 +n;ax];
where (a; x) =
Z
1
x
t
a1
e
t
dt (56)
Z
e
ax
2
dx=
i
p

2
p
a
erf

ix
p
a

(57)
Integrals with Trigonometric Functions
Z
sinaxdx=
1
a
cosax+C (58)
Z
sin
2
axdx=
x
2

sin 2ax
4a
+C (59)
Z
sin
n
axdx=

1
a
cosax2F1

1
2
;
1n
2
;
3
2
;cos
2
ax

+C (60)
Z
sin
3
axdx=
3 cosax
4a
+
cos 3ax
12a
+C (61)
Z
cosaxdx=
1
a
sinax+C (62)
Z
cos
2
axdx=
x
2
+
sin 2ax
4a
+C (63)
Z
cos
p
axdx=
1
a(1 +p)
cos
1+p
ax
2F1

1 +p
2
;
1
2
;
3 +p
2
;cos
2
ax

+C (64)
Z
cos
3
axdx=
3 sinax
4a
+
sin 3ax
12a
+C (65)
Z
cosaxsinbxdx=
cos[(ab)x]
2(ab)

cos[(a+b)x]
2(a+b)
+C; a6=b (66)
Z
sin
2
axcosbxdx=
sin[(2ab)x]
4(2ab)
+
sinbx
2b

sin[(2a+b)x]
4(2a+b)
+C (67)
Z
sin
2
xcosxdx=
1
3
sin
3
x+C (68)
Z
cos
2
axsinbxdx=
cos[(2ab)x]
4(2ab)

cosbx
2b

cos[(2a+b)x]
4(2a+b)
+C (69)
Z
cos
2
axsinaxdx=
1
3a
cos
3
ax+C (70)
Z
sin
2
axcos
2
bxdx=
x
4

sin 2ax
8a

sin[2(ab)x]
16(ab)
+
sin 2bx
8b

sin[2(a+b)x]
16(a+b)
+C(71)
Z
sin
2
axcos
2
axdx=
x
8

sin 4ax
32a
+C (72)
Z
tanaxdx=
1
a
ln cosax+C (73)
Z
tan
2
axdx=x+
1
a
tanax+C (74)
Z
tan
n
axdx=
tan
n+1
ax
a(1 +n)

2F1

n+ 1
2
;1;
n+ 3
2
;tan
2
ax

+C (75)
Z
tan
3
axdx=
1
a
ln cosax+
1
2a
sec
2
ax+C (76)
Z
secxdx= lnjsecx+ tanxj+C
= 2 tanh
1

tan
x
2

+C (77)
Z
sec
2
axdx=
1
a
tanax+C (78)
Z
sec
3
xdx=
1
2
secxtanx+
1
2
lnjsecxtanxj+C(79)
Z
secxtanxdx= secx+C (80)
Z
sec
2
xtanxdx=
1
2
sec
2
x+C (81)
Z
sec
n
xtanxdx=
1
n
sec
n
x+C; n6= 0 (82)
Z
cscxdx= ln


tan
x
2


+C= lnjcscxcotxj+C(83)
3

Z
csc
2
axdx=
1
a
cotax+C (84)
Z
csc
3
xdx=
1
2
cotxcscx+
1
2
lnjcscxcotxj+C(85)
Z
csc
n
xcotxdx=
1
n
csc
n
x+C; n6= 0 (86)
Z
secxcscxdx= lnjtanxj+C (87)
Products of Trigonometric Functions and Monomials
Z
xcosxdx= cosx+xsinx+C (88)
Z
xcosaxdx=
1
a
2
cosax+
x
a
sinax+C (89)
Z
x
2
cosxdx= 2xcosx+

x
2
2

sinx+C (90)
Z
x
2
cosaxdx=
2xcosax
a
2
+
a
2
x
2
2
a
3
sinax+C (91)
Z
x
n
cosxdx=
1
2
(i)
n+1
[(n+ 1;ix)
+(1)
n
(n+ 1; ix)] +C (92)
Z
x
n
cosaxdx=
1
2
(ia)
1n
[(1)
n
(n+ 1;iax)
(n+ 1; ixa)] +C (93)
Z
xsinxdx=xcosx+ sinx+C (94)
Z
xsinaxdx=
xcosax
a
+
sinax
a
2
+C (95)
Z
x
2
sinxdx=

2x
2

cosx+ 2xsinx+C (96)
Z
x
2
sinaxdx=
2a
2
x
2
a
3
cosax+
2xsinax
a
3
+C (97)
Z
x
n
sinxdx=
1
2
(i)
n
[(n+ 1;ix)
(1)
n
(n+ 1;ix)] +C (98)
Products of Trigonometric Functions and
Exponentials
Z
e
x
sinxdx=
1
2
e
x
(sinxcosx) +C (99)
Z
e
bx
sinaxdx=
1
a
2
+b
2
e
bx
(bsinaxacosbx) +C(100)
Z
e
x
cosxdx=
1
2
e
x
(sinx+ cosx) +C (101)
Z
e
bx
cosaxdx=
1
a
2
+b
2
e
bx
(asinax+bcosax) +C(102)
Z
xe
x
sinxdx=
1
2
e
x
(cosxxcosx+xsinx) +C(103)
Z
xe
x
cosxdx=
1
2
e
x
(xcosxsinx+xsinx) +C(104)
Integrals of Hyperbolic Functions
Z
coshaxdx=
1
a
sinhax+C (105)
Z
e
ax
coshbxdx=
8
>
<
>
:
e
ax
a
2
b
2
[acoshbxbsinhbx] +C a6=b
e
2ax
4a
+
x
2
+C a =b
(106)
Z
sinhaxdx=
1
a
coshax+C (107)
Z
e
ax
sinhbxdx=
8
>
<
>
:
e
ax
a
2
b
2
[bcoshbx+asinhbx] +C a6=b
e
2ax
4a

x
2
+C a =b
(108)
Z
e
ax
tanhbxdx=
8
>
>
>
>
>
<
>
>
>
>
>
:
e
(a+2b)x
(a+ 2b)
2F1
h
1 +
a
2b
;1;2 +
a
2b
;e
2bx
i

1
a
e
ax
2F1
h
a
2b
;1;1E;e
2bx
i
+C a6=b
e
ax
2 tan
1
[e
ax
]
a
+C a =b
(109)
Z
tanhbxdx=
1
a
ln coshax+C (110)
Z
cosaxcoshbxdx=
1
a
2
+b
2
[asinaxcoshbx
+bcosaxsinhbx] +C (111)
4

Z
cosaxsinhbxdx=
1
a
2
+b
2
[bcosaxcoshbx+
asinaxsinhbx] +C (112)
Z
sinaxcoshbxdx=
1
a
2
+b
2
[acosaxcoshbx+
bsinaxsinhbx] +C (113)
Z
sinaxsinhbxdx=
1
a
2
+b
2
[bcoshbxsinax
acosaxsinhbx] +C (114)
Z
sinhaxcoshaxdx=
1
4a
[2ax+ sinh 2ax] +C(115)
Z
sinhaxcoshbxdx=
1
b
2
a
2
[bcoshbxsinhax
acoshaxsinhbx] +C (116)
5
Tags