Internship PPT done (1).pdf To enhance recovery of acetonitrile in Batch distillation

BHAGVATAWARGAND 48 views 18 slides Jul 09, 2024
Slide 1
Slide 1 of 18
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18

About This Presentation

To enhance recovery of acetonitrile in batche distillation


Slide Content

Submitted by







Professor, Department of Chemical Engineering,
Shri Guru Gobind Singhji Institute of Engineering & Technology, Nanded
Department of Chemical Engineering,
Shri Guru GobindSinghjiInstitute of Engineering Technology, Nanded.

Industrial Project
on
‘To Enhance the recovery of acetonitrile in batch distillation’
at

2023-2024
Prof. A. P. Chavan
Mr.Madan Mohan Reddy
Pavan Devidas Jadhav (2020BCH018)
Bhagwat Bharat Awargand (2020BCH028)
Anuj Manojkumar Singh (2020BCH004)
GM Production,
Under theGuidanceof
Sai Life Sciences Ltd, Bidar

Introduction:
1) About Sai Life Sciences
2) Motivation
3) Abstract
4) Literature survey
5) Equipment Suitability
6) Scope of improvement
7) Calculations prior change implemented
8) Changes implemented
9) Calculations after changes implemented
10) Cost benefits
11) Conclusion
12) References

•SaiLifeSciencesisoneofIndia’sfastestgrowingContractResearch,Development&
ManufacturingOrganizations
•ItiscurrentlyexpandingR&D,manufacturingcapabilities,automation,datasystems,quality
systemsandtraining.
•ThecompanyhasitsR&DandmanufacturingunitsinbothIndiaandabroad.
Unit2:DiscoveryBiologyFacility,Shamirpet,Hyderabad.
Unit3:Research&TechnologyCentre,Bollaram,Hyderabad.
Unit4:APIManufacturingFacility,Bidar,Karnataka.
R&DLabsatManchester,UK&Boston,USA.
•Establishedin1999,SAIhasfocusedonbuildingexpertcorecapabilitiesmedicinal
chemistry,processdevelopment,andmanufacturing;Ithaseffectivelyexpandedfacilitiesto
providehigh-qualityservicestobettersupporttheincreasingneedsofcustomers.
•Thetwomanufacturingsitesbringtogethermorethan180m³ofmanufacturingcapacity,to
produceKSMs,cGMPintermediatesandAPIsforclinicaltrialsandcommercialdrugs.
•Theplantsarefullyflexible,offeringawidevarietyofreactioncapabilitiesandhandlingof
complexsynthesesatmultiplescales.
About Sai Life Sciences Ltd.

Motivation:
Indian market prices of solvents
Solvent
Specific
Gravity
Price/kg
(in USD)
Price/kg
(in INR)
Price/l
(in INR)
Acetonitrile 0.78 $4.60 ₹ 356.64 ₹ 277.3431
Methanol 0.8 $0.66 ₹ 51.17 ₹ 40.81303
Methyl Tertiary Butyl Ether 0.74 $1.23 ₹ 95.36 ₹ 70.3561
Isopropyl Alcohol 0.786 $1.54 ₹ 119.40 ₹ 93.56388
•Solventscansuspendextract,ordissolveothersubstanceswithoutbringinganychangeinthechemistryofeitherthesubstanceorthesolvent.
•Solventsareusedasreactionmedia,inseparationandpurificationofsynthesizedproductsandalsoforcleaningofequipments.
•Inallmedicinalformulationslikeointments,syrupsandinjectionssolventsareusedtodissolvedrugssafelyandeffectively.
•ToguaranteethatproductsmeetcertainstandardsindustriesusetechniqueslikeHPLC(HighPerformanceLiquidChromatography).
DependingonnatureofstationaryphaseusuallyacetonitrileormethanolareusedasmobilephaseinHPLC.
•Inpharmaceuticalindustryallmanufacturedproductsneedtobeofhighestqualitytoensurelessriskofpatientinsuchcasesinsteadof
residualsolventsfreshsolventsareprofferedduetopurityissues.
•Acc.dataavailableinseparationprocesseslikeHPLCper15kgofbatchitselfrequiresnearlyabout15klofsolventsworth₹41lakhs.
•Toreducethedependencyonfreshsolvents&tomaketheprocesseconomicalitmustbeensuredthatmaximumamountofsolventisreused.
•Herewenoticedthatthereisanampleamountofscopeinmaximizingtherecoveryofusedacetonitrile.

Abstract:
•Acetonitrileisstableandcompatiblewithmostoftheproductsinindustryhenceitiscommonlyusedthoughitiscostly.
•Asolutionofacetonitrile(95%bywt.)andwater(5%bywt.)isemployedasamobilephaseinmostofthereversephaseHPLCunits.
•Acc.dataprovidedmerely14-15KLofmobilephaseisrequiredper15kgbatch.
•Usingfreshacetonitrileforeachbatchisnoteconomicalaspriceof1KLacetonitrileinIndianmarketisapproximately₹3Lakhs.
•Hence,itisimportanttofindeffectivewaysofreusingacetonitrile.
•MobilephasethatisusedinHPLCisinertanddoesn’treactswithothercompoundsinfeed.So,hereisthenegligiblechancethatmobile
phaseisgettingconsumedinHPLC.
•Theonlyprobabilityremainsvalidis,theineffectivenessofbatchdistillation.
•Previouslywhenbatchdistillationwasemployedtorecoveracetonitrilefromseparatedfractions,therecoveryratewasonly60%that
meanseverytime35-40%freshfeedistobeusedtocostingapproximately₹17lakhs.
•Throughourprojectwewillbediscussingthefactorsthatareaffectingtherecoveryrateandhowtherecoverycanbemaximizedinorder
tomakethisprocesseconomical.
•ProblemStatement:‘ToreducetherelianceonuseoffreshacetonitrileinHPLCunit.’

Introduction to chromatography:
•Toguaranteethatgoodspasscertainstandardscompaniesgenerallyusemethodslikechromatography.
•Chromatographyisanefficienttechniqueusedforseparation,identification,andanalysisofvarious
componentsofamixture.Thesamplecomponentsoftenvaryinphysicalorchemicalproperties,and
thisformstheverybasisoftheirseparationthroughchromatography.Eg.Thinlayerchromatography,
gaschromatography,highperformanceliquidchromatographyetc.
•AmongstallthesetechniquesHighPerformanceLiquidChromatography(HPLC)iscommonlyused
asitissimple,specific,rapid,preciseandaccurate.
•Availableindifferentsizesfromlabscaletoindustrialscaleitissuccessfullyadoptedforroutine
qualitycontrolanalysisofdrugs.
StationaryPhase:ColumnsformanimportantpartofHPLCasitisresponsiblefortheseparationof
themixturecomponents.Thesamplethatistobeseparatedorpurifiedisintroducedintothecolumn
alongwiththemobilephaseandtheseparationofcomponentstakesplaceinthecolumn.Thechoice
forthecolumnanddetectorisbasedonthetypeofmethoddevelopedfortheanalysisandalsoonthe
typeofanalytesthataretobepurifiedanddetected.
Detectors:Itisanimportantcomponentofachromatographwhichdetectstheanalytesorthe
componentsofamixturethathavebeenseparatedorpurifiedfromthecolumn.Itsensesthepresence
oftheanalytewhenitelutesfromthecolumnandconvertsitintoanelectricalsignalwhichis
recordedbyadatasystemorconnectedtoadigitaldisplayboardsuchascomputerwherethe
resolutionofpeakscanbeobserved..UVabsorbancebyananalytedependsonthewavelengthused
henceitisimportanttochooseanappropriatewavelengthforanalysis.Thewavelengthusedina
standardUVdetectorusuallyrangesbetween195to370nmwith254nmbeingcommonlyused.

High Performance Liquid Chromatography (HPLC): Compound Acetonitrile
Molecular Formula C
2H
3N
Molecular Weight 41.05
Density (g/ml) 0.7766
Viscosity 0.35cP at 20
0
C
pH
Boiling Point 81.6
0
C at 760 mmhg
Freezing Point -43.8
0
C
Auto-ignition Temperature 524
0
C
Vapour Pressure 88.8 Torr
Polarity Index 5.8
Refractive Index 1.3441 (20
0
C)
UV Cutoff (nm) 190
Dipole Moment 3.44D (20
0
C)
Solubility in Water Miscible in all proportion
Workingprinciple:
Themobilephasemovesthroughthestationaryphasei.e.chromatographycolumnwhichisfilled
withverysmallparticles(alsocalledgels).
Theyinteractdifferentlywitheachsamplecomponentduetodifferenceintheirbindingcapacity.
Theydissolveinthemobilephaseatdifferenttimepointsandtraveldifferentdistancesthrough
thestationaryphasematerial.
Itmeansthecomponentsthatadheremorestronglytotheadsorbentdissolvelateandmigrate
slowlythanthosewhichareboundweakly.
Thisinteractionleadstodifferentretentiontimesofeachcomponentinsidethecolumn.Thus,
usingthesetimedifferences,thecomponentscanbeseparated.
Throughoutthechromatographicrun,themobilephaseflowscontinuouslythroughthecolumn.
Thefractionsconsistingofdifferentanalytecomponentsarecollectedandtheconcentrationof
eachcomponentinrespectivefractionismonitoredbythedetectorovertimeandisreadasa
chromatogram.
Acetonitrileisoftenusedasmobilephaseinreversephasecolumnchromatographytechnique.Where
stationaryphaseislesspolarthanmobilephaseAcetonitrileisbestsuitedforHPLC'sbecause:
UVCut-off:AcetonitrilehaslowvalueofUVCut-offamongstothersolventslikemethanoland
Isopropylalcohol.
Viscosity:Othersolventlikemethanolformhighlyviscousmixturewithwateratcertain
concentrationwhereasacetonitrilehaslowviscosityof0.38cP.
BoilingPoint:Acetonitrilehashigherboilingpointcomparedtoothercommonlyusedsolvents
likemethanol,acetoneandbenzene.
ElutionStrength:Acetonitrilehasahigherelutionstrengthforreversephasechromatography
Pressure:solvents.Thepressureforothersolventsincreaseswhenmixedwithwaterbutnotso
muchforacetonitrileconsequently.Itapplieslesspressuretocolumn.

Batch distillation:
•Onthebasisofprocessapplied,theyareclassifiedas1)ContinuousDistillation,2)Semi-BatchDistillationand3)BatchDistillation
•Batchdistillationmeansthatamixtureisdistilledtoseparateitintoitscomponentfractionsbeforethedistillationstillisagaincharged.
•Batchdistillationishighlypreferableovercontinuousdistillationwhenhigh-value-added,low-volumechemicalsmustbeseparatedlike
inpharmaceuticalindustry,wheremassflowsaresmallandthereisnoneedforcontinuousdistillation.
•WorkingPrinciple:
Batchdistillationisusedforpurifyingsolvents.
Inbatchdistillation,atankischargedwithfeedandthenheated.Vapourflowsoverheadiscondensedandcollectedinareceiver.
Inthisoperation,noliquidisrefluxedbacktothestill,andnoplatesorpackingmaterialsarepresentinsidethestill.
Basedonnumberofstagesinvolvedbatchdistillationcanbefurtherclassifiedas1)Simplebatchdistillationand2)Multistage
batchdistillation.
•Advantages:
Singlecharge:Feedischargedonlyatthestartofdistillation.
Easyusage:Singlecolumncanbeemployedinbinaryormulticomponentdistillation.
Highdegreeofversatility:Usefulwhenprocessingtoxicorhighlypotentcompounds.
Flexibilityinoperation:Allowsonetodealwithuncertaintiesinfeedstocksorproductsspecifications.
Features of Simple Batch Distillation Features of Multistage Distillation
No continuous feed
Staged or packed column placed above
reboiler
Vapour withdrawn continuously Reflux returned to column
No column; a single equilibrium stage Distillate withdrawn continuously

Equipment Suitability:
Reactor:
•Asprocessfluidsunderconsiderationsareacidicinnature.Stainlesssteelreactorsaremorepronetocorrosioninacidicconditions.
•Overthatglasslinedreactorscanbeafeasibleoptionastheyprovidesuperiorcorrosionresistancetoacids,waterandotherchemicalsolution
•Innerwallsofthesereactorsarecoatedwiththinlayerofborosilicateglassthatcutsthecontactbetweenacidicprocessandmetalwallsthus
eliminatingcorrosion.
•Thesmoothsurfaceofglass-linedsteelalsoresiststhebuildupofviscousorstickyproducts,whichmeanslessfrequentcleaning.
•Glasslinedreactorisfoundtobebestsuitedforthisprocesscondition.
Condenser:
•Vaporsgeneratedduringdistillation(acetonitrilevapors)areacidicinnature
•Insuchacasestainlesssteelorglasslinedcondensermightnotbeagoodchoiceasprolongexposuretohightemperaturevapourscancause
corrosioninthesematerialsalso.Graphitecondenserprovideexcellentcorrosionresistancetoacorrosivevapourandfluid.
•Thethermalandphysicalpropertiesofgraphitemakeitanexcellentheattransfermedia.Theadvantagesinclude:1)Exceptionalthermal
conductivity,2)Superiorcorrosionresistance,3)Lowcoefficientofthermalexpansion(CTE),4)Longservicelife.
•Graphitecondenserwillworkbestinsuchacidicconditions.
ColumnChromatography:
•Comparedtootherchromatographictechniques,suchasTLC,HPLCisextremelyquickandefficient.
•Itusesapump,ratherthangravity,toforcealiquidsolventthroughasolidadsorbentmaterial,withdifferentchemicalcomponentsseparating
outastheymoveatdifferentspeeds.
•Theprocesscanbecompletedinroughly10to30minutes,anddeliversitathighresolutions.Itisaccurateandhighlyreproducible.Becauseitis
largelyautomated,basicHPLCrunscanbeperformedwithminimaltraining.
•HPLCisversatileandextremelyprecisewhenitcomestoidentifyingandquantifyingchemicalcomponents.Withmanystepsinvolved,the
precisionofHPLCislargelydowntotheprocessbeingautomatedandthereforehighlyreproducible
•AccordingtothisHPLCcanbeconsideredasabetteroptionoverotherchromatographytechniques.

Scope of improvement:
Reactors Condensers HPLC
Flexible
Parameters
Rigid
Parameters
Flexible
Parameters
Rigid
Parameters
Rigid
Parameters
Utility
temperature
Heat Transfer
Area
Utility
temperatures
Heat Transfer
Area
Bed
material
Utility pressureFluid
properties
(pH, viscosity)
Utility
pressure
Number of
passes
Agitator RPMAgitator typeUtility
flowrate
MOC Bed
dimensions
Reflux
conditions
MOC Heat load Number of
condensers
Feed
temperature
Utility jacket
type
Vapour loadCondenser typeWavelength
of detectors
Reactor
pressure
conditions
Vapour
column
Utility typeConstructional
parameters
Utility flowrate Feed
temperature
EquipmentParameters Effect
Reactor
Utility
temperature
Increase in utility temperature increases heat transfer rates and
thus increases boilup rate also.
Utility
pressure
Change in pressure of utility changes its temperature thereby
changing the heat transfer rate.
Utility
flowrate
High utility flowrates ensure good amount of heat is being
transferred across reactor walls.
Agitator
RPM
Increase in agitator RPM increases heat transfer rates from
walls to reaction mass.
Reflux
Conditions
Majorly used when high purity is intended. As total solvent
present is to be distilled out reflux may not require.
Feed
temperature
High the feed temperature less time required to attain boiling
point.
Pressure
conditions
Atmospheric distillation is time and energy consuming whereas
vacuum distillation is efficient but used for high boiling
mixtures.
Condenser
Utility type
Latent heat, specific heat and thereby heat transfer rate is
dependent on type of utility used that is liquid or gas.
Utility
temperature
Lowering utility temperature ensures all vapours are getting
condensed.
Utility
pressure
Critical factor in case of air cooled condenser where utility
temperature is directly proportional to its pressure.
Utility
flowrate
Though it increases the pumping cost high flowrates provide
high heat transfer rates.
Heat load
Heat load is the critical factor in determining effectiveness of
condenser which indicates heat involved during phase change.
Feed
temperature
Higher the feed temperature can hamper condensation rate.

Calculations:
Step1.CalculateLMTDofreactoratboilingpointofreactionmass:
LMTD=(△T
1
)-(△T
2
)/Ln{(△T
1
)/(△T
2
)}
Incaseofvacuumdistillationfirstlycalculateboilingpointofacetonitrile
atspecifiedpressureandtemperatureusingAntoine’sequation
AntoineEquationT=(B/(A-Log(P)))-C,
Where,A,B&CareAntoineconstantsforspecificsolvent.
Step2.Performheatbalanceacrossthereactorshelltofindoutboilrate:
UxAxLMTD=mxλ
m=(UxAxLMTD)/λ Where,m=Boiluprate(kg/hr)
Step3.Calculateheatloadsandtotaldistillationtimeasfollows:
Q
1=UxAxLMTD
Q
2=Mxλ
t=Q
1/Q
2
Where,Q
1=Specificheatload(kCal/hr),Q
2=Latentheatload(kCal),
t=Distillationtime(hr)
Step4.CalculateLMTDforcondenser:
LMTD
C=(△T
a)-(△T
b)/Ln{(△T
a)/(△T
b)}
Step5.Calculatethevapourflowratetocondenserandcondenservapourloadasfollows:
m=(UxAxLMTD)/λ
V=mxC
px△T
mass+mxλWhere,V=vapourloadoncondenser.
Step6.Evaluatetheheatexchangecapacityofcondenserusinggivenformula:
H
C=uxaxLMTD
C
Where,H
C=Heatexchangecapacityofcondenser.
Antoine Equation
T= (B/(A-Log(P)))-C
Antoine constants for
Acetonitrile
A 7.339896
B 1482.29
C 250.523
Atmospheric
Pressure
(mmhg)
Vacuum
Gauge
Pressure
(mmhg)
Boiling Point
Decrement of
Acetonitrile
(
0
C)
760 0 81.89740951
710 50 79.70860147
660 100 77.39172409
610 150 74.92841432
560 200 72.29587453
510 250 69.46528587
460 300 66.39943134
410 350 63.0489981
360 400 59.34655732
310 450 55.19619397
260 500 50.45431573
210 550 44.89061213
160 600 38.09745288
110 650 29.23335985
60 700 15.99228733
10 750 -16.71948019
Though most of
the vacuum
pumps are
designed for
pressures upto
730 mmhg they
can possibly
deliver vacuum
upto 710 mmhg
only.

Calculations
Batch distillation atmospheric conditions prior change implemented:
Calculations prior change (Atmospheric Conditions)
Reactor side calculations
Type of Reactor Glass Lined Reactor
Capacity of Reactor (in KL) 3
Total Available Volume (in KL) 1.8
Density of Solvent (kg/m
3
) 780
Batch Size (kg) 1404
MOC MS
Overall H.T. coefficient (U=kCal/hr m
2 0
C) 150
Total Surface Area of Reactor (m
2
) 4.921722
Inlet Temperature of Steam (
0
C) 120
Outlet Temperature of Steam (
0
C) 114
Inlet Temperature of feed (
0
C) 82
Vapour temperature (
0
C) 82
delta T
1(
0
C) 38
delta T
2(
0
C) 32
LMTD 34.91411713
Latent Heat of Vaporization (kCal/kg) 174
Boilup Rate (kg/hr) 148.1358435
Heat Balance Calculations
Heat Released by Utility (kCal/hr)25775.64
Heat Load on Condenser (Kcal)244296
Total Distillation Time Required (hr) 9.5
Calculations prior change
Condenser side calculations
MOC Graphite
Condenser H.T. Area (m2) 12
Overall H.T. coefficient (U=kCal/hr m2
0
C) 150
Latent Heat of Vaporization (kCal/kg) 174
Specific heat (kcal/kgK) 0.7
Initial Temperature of Vapours (
0
C) 82
Final Temperature of Condensate (
0
C) 35
Utility Initial Temperature (
0
C) 25
Utility Final Temperature (
0
C) 28
delta T
mass(
0
C) 47
delta T
a (
0
C) 54
delta T
b(
0
C) 10
LMTD 26.09109778
Vapour Flowrate to condenser (kg/hr)148.1358435
Condenser Vapour Load (kg/hr) 30649.30601
Heat Exchanger Capacity 46963.97601

Calculations:
Batch distillation under vacuum conditions prior change implemented:
Calculations prior change (Under Vacuum)
Reactor side calculations
Type of Reactor Glass Lined Reactor
Capacity of Reactor (in KL) 3
Total Available Volume (in KL) 1.8
Density of Solvent (kg/m
3
) 780
Batch Size (kg) 1404
MOC MS
Overall H.T. coefficient (U=kCal/hr m
2 0
C) 150
Total Surface Area of Reactor (m
2
) 4.921722
Inlet Temperature of Steam (
0
C) 40
Outlet Temperature of Steam (
0
C) 34
Inlet Temperature of feed (
0
C) 20
Vapour temperature (
0
C) 20
delta T1 (
0
C) 20
delta T2 (
0
C) 14
LMTD 16.82203951
Latent Heat of Vaporization (kCal/kg) 174
Boilup Rate (kg/hr) 71.37362237
Heat Balance Calculations
Heat Released by Utility (kCal/hr)4834.3
Heat Load on Condenser (Kcal)244296
Total Distillation Time Required (hr) 50.54
Calculations prior change
Condenser side calculations
MOC Graphite
Condenser H.T. Area (m2) 12
Overall H.T. coefficient (U=kCal/hr m2
0
C) 150
Latent Heat of Vaporization (kCal/kg) 174
Specific heat (kcal/kgK) 0.7
Initial Temperature of Vapours (
0
C) 20
Final Temperature of Condensate (
0
C) 14
Utility Initial Temperature (
0
C) 5
Utility Final Temperature (
0
C) 8
delta T
mass(
0
C) 6
delta T
1(
0
C) 12
delta T
2(
0
C) 9
LMTD 10.42817849
Vapour Flowrate to condenser (kg/hr)71.37362237
Condenser Vapour Load (kg/hr) 12718.77951
Heat Exchanger Capacity 18770.72128

Implemented Changes:
•Throughthesecalculationsitisclearthatheatexchangecapacityofcondenserisnotsufficienttocondensedallthevapoursgenerated.
•Usinghightemperatureutilityatreactorsideissignificantlyincreasestheboilupratethatindicateshighvapourflowrategoingtocondenser.
•Butheretheheatexchangecapacityofcondenserislessandapartofvapoursisreleasedthroughvent.Thisconditioncanhampertheoverall
performanceofcondenserandtherebydecreasingrecoveryrates.
•Changeinutilitytemperaturehaveaneffectontheboiluprate.Herethereductioninboilupratecanensurethatheatloadoncondenserisreduced.
•AfterthatchangeinutilitytemperatureoncondensersideisalsofeasibleoptionasitchangesLMTDoncondenserside.
LogarithmicMeanTemperatureDifference(LMTD):
•LMTDisthedrivingforceforcondenser.
•AstheLMTDincreasestheamountofheattransferbetween2fluidsalsoincreases.
•Whenheattransferfromhightemperaturefluidtolowtemperaturefluidthetemperaturebetweenthese2fluidschanges.
•Astimepassestherateofheattransferdecreasesandtheamountofheattransferatdifferentinstantsvariesexponentially.Itisnotfeasibleto
calculatetotalheattransferredbytakingthereadingsatdifferentinstantsorthecalculatingrateatdifferentinstants.
•HereLMTDcomesinpicturewhichwouldgiveanaveragevalueofheattransferaccuratelyandfast.
•ChangingutilitytemperaturesatbothreactorandcondensersideischangingthevaluesofLMTDi.e.positivelyeffectingtherecoveryrate.
•Toknowtheeffectofchangingtheseparametersonrecoverysteampressure(i.e.utilityatreactorside)isreducedfrom2kg/cm
2
to
0.9kg/cm
2
andinsteadofroomtemperaturewater(28
0
C)chilledwaterisused(5
0
C).tohaveadetailedideaonincreaseinheatexchange
capacityfollowingcalculationscanbedone.

Calculations:
Batch distillation atmospheric conditions after change implemented:
Calculations after change (Atmospheric Conditions)
Reactor side calculations
Type of Reactor Glass Lined Reactor
Capacity of Reactor (in KL) 3
Total Available Volume (in KL) 1.8
Density of Solvent (kg/m
3
) 780
Batch Size (kg) 1404
MOC MS
Overall H.T. coefficient (U=kCal/hr m
2 0
C) 150
Total Surface Area of Reactor (m
2
) 4.921722
Inlet Temperature of Steam (
0
C) 96
Outlet Temperature of Steam (
0
C) 90
Inlet Temperature of feed (
0
C) 82
Vapour temperature (
0
C) 82
delta T1 (
0
C) 14
delta T2 (
0
C) 8
LMTD 10.72164176
Latent Heat of Vaporization (kCal/kg) 174
Boilup Rate (kg/hr) 45.49046561
Heat Balance Calculations
Heat Released by Utility (kCal/hr)7915.4
Heat Load on Condenser (Kcal)244296
Total Distillation Time Required (hr) 30.86
Calculations after change
Condenser side calculations
MOC Graphite
Condenser H.T. Area (m2) 12
Overall H.T. coefficient (U=kCal/hr m2
0
C) 150
Latent Heat of Vaporization (kCal/kg) 174
Specific heat (kcal/kgK) 0.7
Initial Temperature of Vapours (
0
C) 82
Final Temperature of Condensate (
0
C) 35
Utility Initial Temperature (
0
C) 5
Utility Final Temperature (
0
C) 8
delta T
mass(
0
C) 47
delta T
1(
0
C) 74
delta T
2(
0
C) 30
LMTD 48.73360675
Vapour Flowrate to condenser (kg/hr)40.94141905
Condenser Vapour Load (kg/hr) 8470.779602
Heat Exchanger Capacity 87720.49215

Cost benefits:
Prior change recovery data
Batch
Size
(in Kg)
Fresh
Acetonitrile
Used (in L)
Recovered
Acetonitrile
Used (in L)
Total
usage
(in L)
By-
product/
Output
Percentage
Recovery
per Batch
13 12200 1500 13700 7718 56%
13 6000 10730 16730 8678 52%
13 1000 9273 10273 8295 81%
13 2000 4198 6198 5400 87%
3.6 2500 0 2500 1014 41%
13 10400 5743 16143 9635 60%
13 4000 8283 12283 8021 70%
13 7000 7364 14364 450 30%
Total= 45100 47091 92191Average 60%
Usage of acetonitrile in month of April
Batch
Size
(in Kg)
Fresh Acetonitrile
Used
(in L)
Recovered
Acetonitrile
Used (in L)
Percentage
Recovery per
Batch
14.4 15130 12835 84.83%
14.4 15130 12585 83.18%
14.4 14463 11870 82.07%
Average 83.4%
Indian market prices of solvents
Solvent
Specific
Gravity
Price/kg
(in USD)
Price/kg
(in INR)
Price/l
(in INR)
Acetonitrile 0.78 $4.60 ₹ 356.64₹ 277.3431
Methanol 0.8 $0.66 ₹ 51.17 ₹ 40.81303
Methyl Tertiary Butyl Ether0.74 $1.23 ₹ 95.36 ₹ 70.3561
Isopropyl Alcohol 0.786 $1.54 ₹ 119.40₹ 93.56388
Direct savings (INR)
Average Batch size (kg) 14.4
Average amount of acetonitrile used (l) 14907.66667
Recovered acetonitrile usage prior change (l) 8944.6
Recovered acetonitrile usage after change (l) 12427.03093
Fall in fresh acetonitrile requirement (l) 3482.430933
Acetonitrile price per litter (INR) 277.3431
Direct savings (INR) 965828.1906
Loss on saving
Working cost (10%) 96582.81906
RT water utility cost (per kg) 2.86
Chiller water utility cost (per kg) 5.87
Utility used in condenser (kg) 987
Cost on utility (INR) 5793.69
Net savings (INR) 863451.6815

Conclusion:
•Duetoitshighdemandandlimitedproduction,acetonitrileiscostlierthanothersolvents.
•Inthistenureobservationsandcalculationsforprocessparametersaremadeinwhichsomeineffectivenessinbatchdistillationprocess
wasobserved.
•Afterdeepdivingintothisissueampleamountofscopeforimprovementswasnoticed.
•Calculationsforthesamewereperformedtoreconfirmthecurrentrecoveryratesatthattime.
•Itwasobservedthathighboiluprateandlowcondenserheatexchangeefficiencywascausingmaximumnumberofvapourstoleftthe
condenseruncondensed.
•CalculationsregardingLMTDshowedthatchangeinutilitytemperaturesmighthaveagoodeffectonrecovery.Hencetheeffecton
recoveryafterchangingtheutilitytemperatureisthencomputed.
•Itwasfoundthatreductioninutilitytempatreactorandcondenserside(i.e.from120-96
0
Cand28-5
0
Crespectively)resultedinincrease
inrecoverypercentagefrom60%to83.5%.

References:
[1] Kirk-Othmer, “ADSORPTION,” in Kirk-Othmer-Encyclopaedia of Chemical Technology, Wiley.
[2] S. L. Sciences. [Online]. Available: https://www.sailife.com/.
[3] K. A. GAVHANE, “Distillation,” in UNIT OPERATIONS -II , NIRALI PRAKASHAN.
[4] A. K. Kalava, “Pharma Engineering,” [Online]. Available: https://www.pharmacalculations.com/.
[5] (MNE-ICT), “epgpathshala,” [Online]. Available: https://epgp.inflibnet.ac.in/Home/ViewSubject?catid=1+p0z2ZbAGSfsyfLITzgZQ==.
[6] NPTEL, Module 5: Distillation.
[7] R. Duke, “Gantt.com,” [Online]. Available: https://www.gantt.com/.
[8] NPTEL, PROCESS DESIGN OF HEAT EXCHANGER.
[9] Y. A. CENGEL, “Boiling and Condensation,” in HEAT TRANSFER, A Practical Approach, McGraw-Hill Education.
[10] U. D. Ki-JooKim, Batch Distillation.
[11] G. Pfaudler. [Online]. Available: https://www.gmmpfaudler.com/.
[12] J. E. Edwards, PROCESS MODELLING AND DESIGN of SHELL AND TUBE HEAT EXCHANGERS.
[13] P. H. W. L. M. Julian Cleveland Smith, “Agitation and MIxingof Liquids,” in Unit Operations of Chemical Engineering, Mc-GrawHill.
[14] M. S. P. a. K. D. Timmerhaus, PLANT DESIGN AND ECONOMICS FOR CHEMICAL ENGINEERS, McGraw-Hill, Inc.
[15] N. C. f. B. Information, “PubChem Compound Summary for CID 6342, Acetonitrile,” [Online]. Available: https://pubchem.ncbi.nlm.nih.gov/compound/Acetonitrile.
[16] Novasep. [Online]. Available: https://www.novasep.com/.
[17] G. o. India, “Department of Chemicals and Petro-Chemicals,” [Online]. Available: https://chemicals.nic.in/sites/default/files/Annual_Report_2021.pdf.