Interpolation with Finite differences

niravbvyas 31,824 views 103 slides May 03, 2012
Slide 1
Slide 1 of 103
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30
Slide 31
31
Slide 32
32
Slide 33
33
Slide 34
34
Slide 35
35
Slide 36
36
Slide 37
37
Slide 38
38
Slide 39
39
Slide 40
40
Slide 41
41
Slide 42
42
Slide 43
43
Slide 44
44
Slide 45
45
Slide 46
46
Slide 47
47
Slide 48
48
Slide 49
49
Slide 50
50
Slide 51
51
Slide 52
52
Slide 53
53
Slide 54
54
Slide 55
55
Slide 56
56
Slide 57
57
Slide 58
58
Slide 59
59
Slide 60
60
Slide 61
61
Slide 62
62
Slide 63
63
Slide 64
64
Slide 65
65
Slide 66
66
Slide 67
67
Slide 68
68
Slide 69
69
Slide 70
70
Slide 71
71
Slide 72
72
Slide 73
73
Slide 74
74
Slide 75
75
Slide 76
76
Slide 77
77
Slide 78
78
Slide 79
79
Slide 80
80
Slide 81
81
Slide 82
82
Slide 83
83
Slide 84
84
Slide 85
85
Slide 86
86
Slide 87
87
Slide 88
88
Slide 89
89
Slide 90
90
Slide 91
91
Slide 92
92
Slide 93
93
Slide 94
94
Slide 95
95
Slide 96
96
Slide 97
97
Slide 98
98
Slide 99
99
Slide 100
100
Slide 101
101
Slide 102
102
Slide 103
103

About This Presentation

Numerical method, Interpolation with finite differences, forward difference, backward difference, central difference, Gregory Newton Forward difference interpolation formula, Gregory Newton Backward difference interpolation formula, Stirlings interpolation formula, Gauss Forward interpolation formul...


Slide Content

Numerical Methods - Finite Differences
Dr. N. B. Vyas
Department of Mathematics,
Atmiya Institute of Tech. and Science,
Rajkot (Guj.)
[email protected]
Dr. N. B. Vyas Numerical Methods - Finite Differences

Finite Differences
Forward dierence
Suppose that a functiony=f(x) is tabulated for the equally
spaced argumentsx0; x0+h; x0+ 2h; :::; x0+nhgiving the
functional valuesy0; y1; y2; :::; yn.
The constant dierence between two consecutive values ofxis
called theinterval of dierencesand is denoted byh.
The operator dened by
y0=y1y0
y1=y2y1:::::::
:::::::
yn1=ynyn1
is calledForward dierenceoperator.
Dr. N. B. Vyas Numerical Methods - Finite Differences

Finite Differences
Forward dierence
Suppose that a functiony=f(x) is tabulated for the equally
spaced argumentsx0; x0+h; x0+ 2h; :::; x0+nhgiving the
functional valuesy0; y1; y2; :::; yn.
The constant dierence between two consecutive values ofxis
called theinterval of dierencesand is denoted byh.
The operator dened by
y0=y1y0
y1=y2y1:::::::
:::::::
yn1=ynyn1
is calledForward dierenceoperator.
Dr. N. B. Vyas Numerical Methods - Finite Differences

Finite Differences
Forward dierence
Suppose that a functiony=f(x) is tabulated for the equally
spaced argumentsx0; x0+h; x0+ 2h; :::; x0+nhgiving the
functional valuesy0; y1; y2; :::; yn.
The constant dierence between two consecutive values ofxis
called theinterval of dierencesand is denoted byh.
The operator dened by
y0=y1y0
y1=y2y1:::::::
:::::::
yn1=ynyn1
is calledForward dierenceoperator.
Dr. N. B. Vyas Numerical Methods - Finite Differences

Finite Differences
Forward dierence
Suppose that a functiony=f(x) is tabulated for the equally
spaced argumentsx0; x0+h; x0+ 2h; :::; x0+nhgiving the
functional valuesy0; y1; y2; :::; yn.
The constant dierence between two consecutive values ofxis
called theinterval of dierencesand is denoted byh.
The operator dened by
y0=y1y0
y1=y2y1:::::::
:::::::
yn1=ynyn1
is calledForward dierenceoperator.
Dr. N. B. Vyas Numerical Methods - Finite Differences

Finite Differences
Forward dierence
Suppose that a functiony=f(x) is tabulated for the equally
spaced argumentsx0; x0+h; x0+ 2h; :::; x0+nhgiving the
functional valuesy0; y1; y2; :::; yn.
The constant dierence between two consecutive values ofxis
called theinterval of dierencesand is denoted byh.
The operator dened by
y0=y1y0
y1=y2y1:::::::
:::::::
yn1=ynyn1
is calledForward dierenceoperator.
Dr. N. B. Vyas Numerical Methods - Finite Differences

Finite Differences
Forward dierence
Suppose that a functiony=f(x) is tabulated for the equally
spaced argumentsx0; x0+h; x0+ 2h; :::; x0+nhgiving the
functional valuesy0; y1; y2; :::; yn.
The constant dierence between two consecutive values ofxis
called theinterval of dierencesand is denoted byh.
The operator dened by
y0=y1y0
y1=y2y1:::::::
:::::::
yn1=ynyn1
is calledForward dierenceoperator.
Dr. N. B. Vyas Numerical Methods - Finite Differences

Finite Differences
Therst forward dierenceis yn=yn+1yn
Thesecond forward dierenceare dened as the dierence of
the rst dierences.

2
y0= (y0) = (y1y0) = y1y0
=y2y1(y1y0) =y22y1+y0

2
y1= y2y1

2
yi= yi+1yi
In general nth forward dierence offis dened by

n
yi=
n1
yi+1
n1
yi
Dr. N. B. Vyas Numerical Methods - Finite Differences

Finite Differences
Therst forward dierenceis yn=yn+1yn
Thesecond forward dierenceare dened as the dierence of
the rst dierences.

2
y0= (y0) = (y1y0) = y1y0
=y2y1(y1y0) =y22y1+y0

2
y1= y2y1

2
yi= yi+1yi
In general nth forward dierence offis dened by

n
yi=
n1
yi+1
n1
yi
Dr. N. B. Vyas Numerical Methods - Finite Differences

Finite Differences
Forward Dierence Table:
x y y
2
y
3
y
4
y
5
y
x0y0
y0
x1y1
2
y0
y1
3
y0
x2y2
2
y1
4
y0
y2
3
y1
5
y0
x3y3
2
y2
4
y1
y3
3
y2
x4y4
2
y3
y4
x5y5
Dr. N. B. Vyas Numerical Methods - Finite Differences

Finite Differences
The operator satises the following properties:
1 f(x)g(x)] = f(x)g(x)
2 cf(x)] =cf(x)3
m

n
f(x) =
m+n
f(x),m; nare positive integers
4
n
ynis a constant,
n+1
yn= 0 ,
n+2
yn= 0,: : :
i.e. (n+ 1)
th
and higher dierences are zero.
Dr. N. B. Vyas Numerical Methods - Finite Differences

Finite Differences
The operator satises the following properties:
1 f(x)g(x)] = f(x)g(x)
2 cf(x)] =cf(x)3
m

n
f(x) =
m+n
f(x),m; nare positive integers
4
n
ynis a constant,
n+1
yn= 0 ,
n+2
yn= 0,: : :
i.e. (n+ 1)
th
and higher dierences are zero.
Dr. N. B. Vyas Numerical Methods - Finite Differences

Finite Differences
The operator satises the following properties:
1 f(x)g(x)] = f(x)g(x)
2 cf(x)] =cf(x)3
m

n
f(x) =
m+n
f(x),m; nare positive integers
4
n
ynis a constant,
n+1
yn= 0 ,
n+2
yn= 0,: : :
i.e. (n+ 1)
th
and higher dierences are zero.
Dr. N. B. Vyas Numerical Methods - Finite Differences

Finite Differences
Backward dierence
Suppose that a functiony=f(x) is tabulated for the equally
spaced argumentsx0; x0+h; x0+ 2h; :::; x0+nhgiving the
functional valuesy0; y1; y2; :::; yn.
The operatorrdened by
ry1=y1y0
ry2=y2y1:::::::
:::::::
ryn=ynyn1
is calledBackward dierenceoperator.
Dr. N. B. Vyas Numerical Methods - Finite Differences

Finite Differences
Backward dierence
Suppose that a functiony=f(x) is tabulated for the equally
spaced argumentsx0; x0+h; x0+ 2h; :::; x0+nhgiving the
functional valuesy0; y1; y2; :::; yn.
The operatorrdened by
ry1=y1y0
ry2=y2y1:::::::
:::::::
ryn=ynyn1
is calledBackward dierenceoperator.
Dr. N. B. Vyas Numerical Methods - Finite Differences

Finite Differences
Backward dierence
Suppose that a functiony=f(x) is tabulated for the equally
spaced argumentsx0; x0+h; x0+ 2h; :::; x0+nhgiving the
functional valuesy0; y1; y2; :::; yn.
The operatorrdened by
ry1=y1y0
ry2=y2y1:::::::
:::::::
ryn=ynyn1
is calledBackward dierenceoperator.
Dr. N. B. Vyas Numerical Methods - Finite Differences

Finite Differences
Backward dierence
Suppose that a functiony=f(x) is tabulated for the equally
spaced argumentsx0; x0+h; x0+ 2h; :::; x0+nhgiving the
functional valuesy0; y1; y2; :::; yn.
The operatorrdened by
ry1=y1y0
ry2=y2y1:::::::
:::::::
ryn=ynyn1
is calledBackward dierenceoperator.
Dr. N. B. Vyas Numerical Methods - Finite Differences

Finite Differences
Backward dierence
Suppose that a functiony=f(x) is tabulated for the equally
spaced argumentsx0; x0+h; x0+ 2h; :::; x0+nhgiving the
functional valuesy0; y1; y2; :::; yn.
The operatorrdened by
ry1=y1y0
ry2=y2y1:::::::
:::::::
ryn=ynyn1
is calledBackward dierenceoperator.
Dr. N. B. Vyas Numerical Methods - Finite Differences

Finite Differences
Therst backward dierenceisryn=ynyn1
Thesecond backward dierenceare obtain by the dierence
of the rst dierences.
r
2
y2=r(ry2) =r(y2y1) =ry2 ry1
=y2y1(y1y0) =y22y1+y0
r
2
y3=ry3 ry2
r
2
yn=ryn ryn1
In general nth backward dierence offis dened by
r
n
yi=r
n1
yi r
n1
yi1
Dr. N. B. Vyas Numerical Methods - Finite Differences

Finite Differences
Therst backward dierenceisryn=ynyn1
Thesecond backward dierenceare obtain by the dierence
of the rst dierences.
r
2
y2=r(ry2) =r(y2y1) =ry2 ry1
=y2y1(y1y0) =y22y1+y0
r
2
y3=ry3 ry2
r
2
yn=ryn ryn1
In general nth backward dierence offis dened by
r
n
yi=r
n1
yi r
n1
yi1
Dr. N. B. Vyas Numerical Methods - Finite Differences

Finite Differences
Therst backward dierenceisryn=ynyn1
Thesecond backward dierenceare obtain by the dierence
of the rst dierences.
r
2
y2=r(ry2) =r(y2y1) =ry2 ry1
=y2y1(y1y0) =y22y1+y0
r
2
y3=ry3 ry2
r
2
yn=ryn ryn1
In general nth backward dierence offis dened by
r
n
yi=r
n1
yi r
n1
yi1
Dr. N. B. Vyas Numerical Methods - Finite Differences

Finite Differences
Backward Dierence Table:
x y ryr
2
yr
3
yr
4
yr
5
y
x0y0
ry1
x1y1 r
2
y2
ry2 r
3
y3
x2y2 r
2
y3 r
4
y4
ry3 r
3
y4 r
5
y5
x3y3 r
2
y4 r
4
y5
ry4 r
3
y5
x4y4 r
2
y5
ry5
x5y5
Dr. N. B. Vyas Numerical Methods - Finite Differences

Finite Differences
Central dierence
The operatordened by
y1
2
=y1y0
y3
2
=y2y1:::::::
:::::::
y
n
1
2
=ynyn1
is calledCentral dierenceoperator.
Similarly, higher order central dierences are dened as

2
y1=y3
2
y1
2

2
y2=y5
2
y3
2
:::::::

3
y3
2
=
2
y2
2
y1
Dr. N. B. Vyas Numerical Methods - Finite Differences

Finite Differences
Central dierence
The operatordened by
y1
2
=y1y0
y3
2
=y2y1:::::::
:::::::
y
n
1
2
=ynyn1
is calledCentral dierenceoperator.
Similarly, higher order central dierences are dened as

2
y1=y3
2
y1
2

2
y2=y5
2
y3
2
:::::::

3
y3
2
=
2
y2
2
y1
Dr. N. B. Vyas Numerical Methods - Finite Differences

Finite Differences
Central dierence
The operatordened by
y1
2
=y1y0
y3
2
=y2y1:::::::
:::::::
y
n
1
2
=ynyn1
is calledCentral dierenceoperator.
Similarly, higher order central dierences are dened as

2
y1=y3
2
y1
2

2
y2=y5
2
y3
2
:::::::

3
y3
2
=
2
y2
2
y1
Dr. N. B. Vyas Numerical Methods - Finite Differences

Finite Differences
Central dierence
The operatordened by
y1
2
=y1y0
y3
2
=y2y1:::::::
:::::::
y
n
1
2
=ynyn1
is calledCentral dierenceoperator.
Similarly, higher order central dierences are dened as

2
y1=y3
2
y1
2

2
y2=y5
2
y3
2
:::::::

3
y3
2
=
2
y2
2
y1
Dr. N. B. Vyas Numerical Methods - Finite Differences

Finite Differences
Central dierence
The operatordened by
y1
2
=y1y0
y3
2
=y2y1:::::::
:::::::
y
n
1
2
=ynyn1
is calledCentral dierenceoperator.
Similarly, higher order central dierences are dened as

2
y1=y3
2
y1
2

2
y2=y5
2
y3
2
:::::::

3
y3
2
=
2
y2
2
y1
Dr. N. B. Vyas Numerical Methods - Finite Differences

Finite Differences
Central dierence
The operatordened by
y1
2
=y1y0
y3
2
=y2y1:::::::
:::::::
y
n
1
2
=ynyn1
is calledCentral dierenceoperator.
Similarly, higher order central dierences are dened as

2
y1=y3
2
y1
2

2
y2=y5
2
y3
2
:::::::

3
y3
2
=
2
y2
2
y1
Dr. N. B. Vyas Numerical Methods - Finite Differences

Finite Differences
Central dierence
The operatordened by
y1
2
=y1y0
y3
2
=y2y1:::::::
:::::::
y
n
1
2
=ynyn1
is calledCentral dierenceoperator.
Similarly, higher order central dierences are dened as

2
y1=y3
2
y1
2

2
y2=y5
2
y3
2
:::::::

3
y3
2
=
2
y2
2
y1
Dr. N. B. Vyas Numerical Methods - Finite Differences

Finite Differences
Central Dierence Table:
x y y
2
y
3
y
4
y
5
y
x0y0
y1
2
x1y1
2
y1
y3
2

3
y3
2
x2y2
2
y2
4
y2
y5
2

3
y5
2

5
y5
2
x3y3
2
y3
4
y3
y7
2

3
y7
2
x4y4
2
y4
y9
2
x5y5
Dr. N. B. Vyas Numerical Methods - Finite Differences

Finite Differences
NOTE:
From all three dierence tables, we can see that only the
notations changes not the dierences.
y1y0= y0=ry1=y1
2
Alternative notations for the functiony=f(x).For two consecutive values ofxdiering byh.yx=yx+hyx=f(x+h)f(x)ryx=yxyxh=f(x)f(xh)yx=y
x+
h
2
y
x
h
2
=f(x+
h
2
)f(x
h
2
)
Dr. N. B. Vyas Numerical Methods - Finite Differences

Finite Differences
NOTE:
From all three dierence tables, we can see that only the
notations changes not the dierences.
y1y0= y0=ry1=y1
2
Alternative notations for the functiony=f(x).For two consecutive values ofxdiering byh.yx=yx+hyx=f(x+h)f(x)ryx=yxyxh=f(x)f(xh)yx=y
x+
h
2
y
x
h
2
=f(x+
h
2
)f(x
h
2
)
Dr. N. B. Vyas Numerical Methods - Finite Differences

Finite Differences
NOTE:
From all three dierence tables, we can see that only the
notations changes not the dierences.
y1y0= y0=ry1=y1
2
Alternative notations for the functiony=f(x).For two consecutive values ofxdiering byh.yx=yx+hyx=f(x+h)f(x)ryx=yxyxh=f(x)f(xh)yx=y
x+
h
2
y
x
h
2
=f(x+
h
2
)f(x
h
2
)
Dr. N. B. Vyas Numerical Methods - Finite Differences

Finite Differences
NOTE:
From all three dierence tables, we can see that only the
notations changes not the dierences.
y1y0= y0=ry1=y1
2
Alternative notations for the functiony=f(x).For two consecutive values ofxdiering byh.yx=yx+hyx=f(x+h)f(x)ryx=yxyxh=f(x)f(xh)yx=y
x+
h
2
y
x
h
2
=f(x+
h
2
)f(x
h
2
)
Dr. N. B. Vyas Numerical Methods - Finite Differences

Finite Differences
NOTE:
From all three dierence tables, we can see that only the
notations changes not the dierences.
y1y0= y0=ry1=y1
2
Alternative notations for the functiony=f(x).For two consecutive values ofxdiering byh.yx=yx+hyx=f(x+h)f(x)ryx=yxyxh=f(x)f(xh)yx=y
x+
h
2
y
x
h
2
=f(x+
h
2
)f(x
h
2
)
Dr. N. B. Vyas Numerical Methods - Finite Differences

Finite Differences
NOTE:
From all three dierence tables, we can see that only the
notations changes not the dierences.
y1y0= y0=ry1=y1
2
Alternative notations for the functiony=f(x).For two consecutive values ofxdiering byh.yx=yx+hyx=f(x+h)f(x)ryx=yxyxh=f(x)f(xh)yx=y
x+
h
2
y
x
h
2
=f(x+
h
2
)f(x
h
2
)
Dr. N. B. Vyas Numerical Methods - Finite Differences

Finite Differences
Evaluate the following. The interval of dierence beingh.
1
n
e
x
2logf(x)3 tan
1
x)4
2
cos2x
Dr. N. B. Vyas Numerical Methods - Finite Differences

Finite Differences
Evaluate the following. The interval of dierence beingh.
1
n
e
x
2logf(x)3 tan
1
x)4
2
cos2x
Dr. N. B. Vyas Numerical Methods - Finite Differences

Finite Differences
Evaluate the following. The interval of dierence beingh.
1
n
e
x
2logf(x)3 tan
1
x)4
2
cos2x
Dr. N. B. Vyas Numerical Methods - Finite Differences

Finite Differences
Evaluate the following. The interval of dierence beingh.
1
n
e
x
2logf(x)3 tan
1
x)4
2
cos2x
Dr. N. B. Vyas Numerical Methods - Finite Differences

Finite Differences
Other Dierence Operator
1. Shift OperatorE:
Edoes the operation of increasing the argumentxbyhso that
Ef(x) =f(x+h);
E
2
f(x) =E(Ef(x)) =Ef(x+h) =f(x+ 2h);E
3
f(x) =f(x+ 3h); E
n
f(x) =f(x+nh);The inverse operatorE
1
is dened asE
1
f(x) =f(xh);E
n
f(x) =f(xnh);Ifyxis the functionf(x), thenEyx=yx+h; E
1
yx=yxh;E
n
yx=yx+nh; Dr. N. B. Vyas Numerical Methods - Finite Differences

Finite Differences
Other Dierence Operator
1. Shift OperatorE:
Edoes the operation of increasing the argumentxbyhso that
Ef(x) =f(x+h);
E
2
f(x) =E(Ef(x)) =Ef(x+h) =f(x+ 2h);E
3
f(x) =f(x+ 3h); E
n
f(x) =f(x+nh);The inverse operatorE
1
is dened asE
1
f(x) =f(xh);E
n
f(x) =f(xnh);Ifyxis the functionf(x), thenEyx=yx+h; E
1
yx=yxh;E
n
yx=yx+nh; Dr. N. B. Vyas Numerical Methods - Finite Differences

Finite Differences
Other Dierence Operator
1. Shift OperatorE:
Edoes the operation of increasing the argumentxbyhso that
Ef(x) =f(x+h);
E
2
f(x) =E(Ef(x)) =Ef(x+h) =f(x+ 2h);E
3
f(x) =f(x+ 3h); E
n
f(x) =f(x+nh);The inverse operatorE
1
is dened asE
1
f(x) =f(xh);E
n
f(x) =f(xnh);Ifyxis the functionf(x), thenEyx=yx+h; E
1
yx=yxh;E
n
yx=yx+nh; Dr. N. B. Vyas Numerical Methods - Finite Differences

Finite Differences
Other Dierence Operator
1. Shift OperatorE:
Edoes the operation of increasing the argumentxbyhso that
Ef(x) =f(x+h);
E
2
f(x) =E(Ef(x)) =Ef(x+h) =f(x+ 2h);E
3
f(x) =f(x+ 3h); E
n
f(x) =f(x+nh);The inverse operatorE
1
is dened asE
1
f(x) =f(xh);E
n
f(x) =f(xnh);Ifyxis the functionf(x), thenEyx=yx+h; E
1
yx=yxh;E
n
yx=yx+nh; Dr. N. B. Vyas Numerical Methods - Finite Differences

Finite Differences
Other Dierence Operator
1. Shift OperatorE:
Edoes the operation of increasing the argumentxbyhso that
Ef(x) =f(x+h);
E
2
f(x) =E(Ef(x)) =Ef(x+h) =f(x+ 2h);E
3
f(x) =f(x+ 3h); E
n
f(x) =f(x+nh);The inverse operatorE
1
is dened asE
1
f(x) =f(xh);E
n
f(x) =f(xnh);Ifyxis the functionf(x), thenEyx=yx+h; E
1
yx=yxh;E
n
yx=yx+nh; Dr. N. B. Vyas Numerical Methods - Finite Differences

Finite Differences
Other Dierence Operator
1. Shift OperatorE:
Edoes the operation of increasing the argumentxbyhso that
Ef(x) =f(x+h);
E
2
f(x) =E(Ef(x)) =Ef(x+h) =f(x+ 2h);E
3
f(x) =f(x+ 3h); E
n
f(x) =f(x+nh);The inverse operatorE
1
is dened asE
1
f(x) =f(xh);E
n
f(x) =f(xnh);Ifyxis the functionf(x), thenEyx=yx+h; E
1
yx=yxh;E
n
yx=yx+nh; Dr. N. B. Vyas Numerical Methods - Finite Differences

Finite Differences
Other Dierence Operator
1. Shift OperatorE:
Edoes the operation of increasing the argumentxbyhso that
Ef(x) =f(x+h);
E
2
f(x) =E(Ef(x)) =Ef(x+h) =f(x+ 2h);E
3
f(x) =f(x+ 3h); E
n
f(x) =f(x+nh);The inverse operatorE
1
is dened asE
1
f(x) =f(xh);E
n
f(x) =f(xnh);Ifyxis the functionf(x), thenEyx=yx+h; E
1
yx=yxh;E
n
yx=yx+nh; Dr. N. B. Vyas Numerical Methods - Finite Differences

Finite Differences
Other Dierence Operator
1. Shift OperatorE:
Edoes the operation of increasing the argumentxbyhso that
Ef(x) =f(x+h);
E
2
f(x) =E(Ef(x)) =Ef(x+h) =f(x+ 2h);E
3
f(x) =f(x+ 3h); E
n
f(x) =f(x+nh);The inverse operatorE
1
is dened asE
1
f(x) =f(xh);E
n
f(x) =f(xnh);Ifyxis the functionf(x), thenEyx=yx+h; E
1
yx=yxh;E
n
yx=yx+nh; Dr. N. B. Vyas Numerical Methods - Finite Differences

Finite Differences
Other Dierence Operator
1. Shift OperatorE:
Edoes the operation of increasing the argumentxbyhso that
Ef(x) =f(x+h);
E
2
f(x) =E(Ef(x)) =Ef(x+h) =f(x+ 2h);E
3
f(x) =f(x+ 3h); E
n
f(x) =f(x+nh);The inverse operatorE
1
is dened asE
1
f(x) =f(xh);E
n
f(x) =f(xnh);Ifyxis the functionf(x), thenEyx=yx+h; E
1
yx=yxh;E
n
yx=yx+nh; Dr. N. B. Vyas Numerical Methods - Finite Differences

Finite Differences
Other Dierence Operator
1. Shift OperatorE:
Edoes the operation of increasing the argumentxbyhso that
Ef(x) =f(x+h);
E
2
f(x) =E(Ef(x)) =Ef(x+h) =f(x+ 2h);E
3
f(x) =f(x+ 3h); E
n
f(x) =f(x+nh);The inverse operatorE
1
is dened asE
1
f(x) =f(xh);E
n
f(x) =f(xnh);Ifyxis the functionf(x), thenEyx=yx+h; E
1
yx=yxh;E
n
yx=yx+nh; Dr. N. B. Vyas Numerical Methods - Finite Differences

Finite Differences
Other Dierence Operator
1. Shift OperatorE:
Edoes the operation of increasing the argumentxbyhso that
Ef(x) =f(x+h);
E
2
f(x) =E(Ef(x)) =Ef(x+h) =f(x+ 2h);E
3
f(x) =f(x+ 3h); E
n
f(x) =f(x+nh);The inverse operatorE
1
is dened asE
1
f(x) =f(xh);E
n
f(x) =f(xnh);Ifyxis the functionf(x), thenEyx=yx+h; E
1
yx=yxh;E
n
yx=yx+nh; Dr. N. B. Vyas Numerical Methods - Finite Differences

Finite Differences
Other Dierence Operator
1. Shift OperatorE:
Edoes the operation of increasing the argumentxbyhso that
Ef(x) =f(x+h);
E
2
f(x) =E(Ef(x)) =Ef(x+h) =f(x+ 2h);E
3
f(x) =f(x+ 3h); E
n
f(x) =f(x+nh);The inverse operatorE
1
is dened asE
1
f(x) =f(xh);E
n
f(x) =f(xnh);Ifyxis the functionf(x), thenEyx=yx+h; E
1
yx=yxh;E
n
yx=yx+nh; Dr. N. B. Vyas Numerical Methods - Finite Differences

Finite Differences
2. Averaging Operator:
It is dened as
f(x) =
1
2

f

x+
h
2

+f

x
h
2

;
i.e.yx=
1
2
h
y
x+
h
2
+y
x
h
2
i
;
3. Dierential OperatorD:
It is dened asDf(x) =
d
dx
f(x) =f
0
(x);
Dr. N. B. Vyas Numerical Methods - Finite Differences

Finite Differences
2. Averaging Operator:
It is dened as
f(x) =
1
2

f

x+
h
2

+f

x
h
2

;
i.e.yx=
1
2
h
y
x+
h
2
+y
x
h
2
i
;
3. Dierential OperatorD:
It is dened asDf(x) =
d
dx
f(x) =f
0
(x);
Dr. N. B. Vyas Numerical Methods - Finite Differences

Finite Differences
2. Averaging Operator:
It is dened as
f(x) =
1
2

f

x+
h
2

+f

x
h
2

;
i.e.yx=
1
2
h
y
x+
h
2
+y
x
h
2
i
;
3. Dierential OperatorD:
It is dened asDf(x) =
d
dx
f(x) =f
0
(x);
Dr. N. B. Vyas Numerical Methods - Finite Differences

Finite Differences
2. Averaging Operator:
It is dened as
f(x) =
1
2

f

x+
h
2

+f

x
h
2

;
i.e.yx=
1
2
h
y
x+
h
2
+y
x
h
2
i
;
3. Dierential OperatorD:
It is dened asDf(x) =
d
dx
f(x) =f
0
(x);
Dr. N. B. Vyas Numerical Methods - Finite Differences

Finite Differences
2. Averaging Operator:
It is dened as
f(x) =
1
2

f

x+
h
2

+f

x
h
2

;
i.e.yx=
1
2
h
y
x+
h
2
+y
x
h
2
i
;
3. Dierential OperatorD:
It is dened asDf(x) =
d
dx
f(x) =f
0
(x);
Dr. N. B. Vyas Numerical Methods - Finite Differences

Finite Differences
Relation between the operators
1 E1
2r= 1E
1
3=E
1
2E

1
2
4=
1
2
fE
1
2+E

1
2g
5 Er=rE=E
1
2
6E=e
hD
7 r) = 18 r= r=
2
Dr. N. B. Vyas Numerical Methods - Finite Differences

Finite Differences
Relation between the operators
1 E1
2r= 1E
1
3=E
1
2E

1
2
4=
1
2
fE
1
2+E

1
2g
5 Er=rE=E
1
2
6E=e
hD
7 r) = 18 r= r=
2
Dr. N. B. Vyas Numerical Methods - Finite Differences

Finite Differences
Relation between the operators
1 E1
2r= 1E
1
3=E
1
2E

1
2
4=
1
2
fE
1
2+E

1
2g
5 Er=rE=E
1
2
6E=e
hD
7 r) = 18 r= r=
2
Dr. N. B. Vyas Numerical Methods - Finite Differences

Finite Differences
Relation between the operators
1 E1
2r= 1E
1
3=E
1
2E

1
2
4=
1
2
fE
1
2+E

1
2g
5 Er=rE=E
1
2
6E=e
hD
7 r) = 18 r= r=
2
Dr. N. B. Vyas Numerical Methods - Finite Differences

Finite Differences
Relation between the operators
1 E1
2r= 1E
1
3=E
1
2E

1
2
4=
1
2
fE
1
2+E

1
2g
5 Er=rE=E
1
2
6E=e
hD
7 r) = 18 r= r=
2
Dr. N. B. Vyas Numerical Methods - Finite Differences

Finite Differences
Relation between the operators
1 E1
2r= 1E
1
3=E
1
2E

1
2
4=
1
2
fE
1
2+E

1
2g
5 Er=rE=E
1
2
6E=e
hD
7 r) = 18 r= r=
2
Dr. N. B. Vyas Numerical Methods - Finite Differences

Finite Differences
Relation between the operators
1 E1
2r= 1E
1
3=E
1
2E

1
2
4=
1
2
fE
1
2+E

1
2g
5 Er=rE=E
1
2
6E=e
hD
7 r) = 18 r= r=
2
Dr. N. B. Vyas Numerical Methods - Finite Differences

Finite Differences
Relation between the operators
1 E1
2r= 1E
1
3=E
1
2E

1
2
4=
1
2
fE
1
2+E

1
2g
5 Er=rE=E
1
2
6E=e
hD
7 r) = 18 r= r=
2
Dr. N. B. Vyas Numerical Methods - Finite Differences

Finite Differences
9
2

2
=

1 +
1
2

2

2
10
2
= 1 +
1
4

211E
1
2=+
1
2
12E

1
2=
1
2

13
1
2

2
+
r
1 +

2
4
14=
1
2
E
1
+
1
2

Dr. N. B. Vyas Numerical Methods - Finite Differences

Finite Differences
9
2

2
=

1 +
1
2

2

2
10
2
= 1 +
1
4

211E
1
2=+
1
2
12E

1
2=
1
2

13
1
2

2
+
r
1 +

2
4
14=
1
2
E
1
+
1
2

Dr. N. B. Vyas Numerical Methods - Finite Differences

Finite Differences
9
2

2
=

1 +
1
2

2

2
10
2
= 1 +
1
4

211E
1
2=+
1
2
12E

1
2=
1
2

13
1
2

2
+
r
1 +

2
4
14=
1
2
E
1
+
1
2

Dr. N. B. Vyas Numerical Methods - Finite Differences

Finite Differences
9
2

2
=

1 +
1
2

2

2
10
2
= 1 +
1
4

211E
1
2=+
1
2
12E

1
2=
1
2

13
1
2

2
+
r
1 +

2
4
14=
1
2
E
1
+
1
2

Dr. N. B. Vyas Numerical Methods - Finite Differences

Finite Differences
9
2

2
=

1 +
1
2

2

2
10
2
= 1 +
1
4

211E
1
2=+
1
2
12E

1
2=
1
2

13
1
2

2
+
r
1 +

2
4
14=
1
2
E
1
+
1
2

Dr. N. B. Vyas Numerical Methods - Finite Differences

Finite Differences
9
2

2
=

1 +
1
2

2

2
10
2
= 1 +
1
4

211E
1
2=+
1
2
12E

1
2=
1
2

13
1
2

2
+
r
1 +

2
4
14=
1
2
E
1
+
1
2

Dr. N. B. Vyas Numerical Methods - Finite Differences

Finite Differences
9
2

2
=

1 +
1
2

2

2
10
2
= 1 +
1
4

211E
1
2=+
1
2
12E

1
2=
1
2

13
1
2

2
+
r
1 +

2
4
14=
1
2
E
1
+
1
2

Dr. N. B. Vyas Numerical Methods - Finite Differences

Gregory - Newton Forward Interpolation Formula
To estimate the value of a function near thebeginninga table,
the forward dierence interpolation formula in used.
Letyx=f(x) be a function which takes the values
yx0
; yx0+h; yx0+2h; : : :corresponding to the values
x0; x0+h; x0+ 2h; : : :ofx.
Suppose we want to evaluateyxwhenx=x0+ph, wherepis
any real number.
Dr. N. B. Vyas Numerical Methods - Finite Differences

Gregory - Newton Forward Interpolation Formula
To estimate the value of a function near thebeginninga table,
the forward dierence interpolation formula in used.
Letyx=f(x) be a function which takes the values
yx0
; yx0+h; yx0+2h; : : :corresponding to the values
x0; x0+h; x0+ 2h; : : :ofx.
Suppose we want to evaluateyxwhenx=x0+ph, wherepis
any real number.
Dr. N. B. Vyas Numerical Methods - Finite Differences

Gregory - Newton Forward Interpolation Formula
To estimate the value of a function near thebeginninga table,
the forward dierence interpolation formula in used.
Letyx=f(x) be a function which takes the values
yx0
; yx0+h; yx0+2h; : : :corresponding to the values
x0; x0+h; x0+ 2h; : : :ofx.
Suppose we want to evaluateyxwhenx=x0+ph, wherepis
any real number.
Dr. N. B. Vyas Numerical Methods - Finite Differences

Gregory - Newton Forward Interpolation Formula
To estimate the value of a function near thebeginninga table,
the forward dierence interpolation formula in used.
Letyx=f(x) be a function which takes the values
yx0
; yx0+h; yx0+2h; : : :corresponding to the values
x0; x0+h; x0+ 2h; : : :ofx.
Suppose we want to evaluateyxwhenx=x0+ph, wherepis
any real number.
Dr. N. B. Vyas Numerical Methods - Finite Differences

Gregory - Newton Forward Interpolation Formula
Let it beyp. For any real numbern, we have dened operatorE
such thatE
n
f(x) =f(x+nh).
)yx=yx0+ph=f(x0+ph) =E
p
yx0
= (1 + )
p
y0
=

1 +p +
p(p1)
2!

2
+
p(p1)(p2)
3!

3
+:::

y0
yx=y0+py0+
p(p1)
2!

2
y0+
p(p1)(p2)
3!

3
y0+:::
is calledNewton's forward interpolationformula.
Dr. N. B. Vyas Numerical Methods - Finite Differences

Gregory - Newton Forward Interpolation Formula
Let it beyp. For any real numbern, we have dened operatorE
such thatE
n
f(x) =f(x+nh).
)yx=yx0+ph=f(x0+ph) =E
p
yx0
= (1 + )
p
y0
=

1 +p +
p(p1)
2!

2
+
p(p1)(p2)
3!

3
+:::

y0
yx=y0+py0+
p(p1)
2!

2
y0+
p(p1)(p2)
3!

3
y0+:::
is calledNewton's forward interpolationformula.
Dr. N. B. Vyas Numerical Methods - Finite Differences

Gregory - Newton Forward Interpolation Formula
Let it beyp. For any real numbern, we have dened operatorE
such thatE
n
f(x) =f(x+nh).
)yx=yx0+ph=f(x0+ph) =E
p
yx0
= (1 + )
p
y0
=

1 +p +
p(p1)
2!

2
+
p(p1)(p2)
3!

3
+:::

y0
yx=y0+py0+
p(p1)
2!

2
y0+
p(p1)(p2)
3!

3
y0+:::
is calledNewton's forward interpolationformula.
Dr. N. B. Vyas Numerical Methods - Finite Differences

Example
Ex.
ndf(0:5).
x-2-10123
f(x)155131125
Dr. N. B. Vyas Numerical Methods - Finite Differences

Example
Ex.
below estimate the population for the year 1895.
Year: 18911901191119211931
Population(in thousand):46 66 81 93101
Dr. N. B. Vyas Numerical Methods - Finite Differences

Example
Ex.
Newton's forward method for the following data:
Year: 1976197819801982
Production:20 27 38 50
Dr. N. B. Vyas Numerical Methods - Finite Differences

Gregory - Newton Backward Interpolation Formula
To estimate the value of a function near theendof a table, the
backward dierence interpolation formula in used.
Letyx=f(x) be a function which takes the values
yx0
; yx0+h; yx0+2h; : : :corresponding to the values
x0; x0+h; x0+ 2h; : : :ofx.
Suppose we want to evaluateyxwhenx=xn+ph, wherepis
any real number.
Dr. N. B. Vyas Numerical Methods - Finite Differences

Gregory - Newton Backward Interpolation Formula
To estimate the value of a function near theendof a table, the
backward dierence interpolation formula in used.
Letyx=f(x) be a function which takes the values
yx0
; yx0+h; yx0+2h; : : :corresponding to the values
x0; x0+h; x0+ 2h; : : :ofx.
Suppose we want to evaluateyxwhenx=xn+ph, wherepis
any real number.
Dr. N. B. Vyas Numerical Methods - Finite Differences

Gregory - Newton Backward Interpolation Formula
To estimate the value of a function near theendof a table, the
backward dierence interpolation formula in used.
Letyx=f(x) be a function which takes the values
yx0
; yx0+h; yx0+2h; : : :corresponding to the values
x0; x0+h; x0+ 2h; : : :ofx.
Suppose we want to evaluateyxwhenx=xn+ph, wherepis
any real number.
Dr. N. B. Vyas Numerical Methods - Finite Differences

Gregory - Newton Backward Interpolation Formula
Let it beyp. For any real numbern, we have dened operatorE
such thatE
n
f(x) =f(x+nh).
)yx=yxn+ph=f(xn+ph) =E
p
yxn= (1 r)
p
yn
=

1 +pr+
p(p+ 1)
2!
r
2
+
p(p+ 1)(p+ 2)
3!
r
3
+:::

yn
yx=yn+pryn+
p(p+ 1)
2!
r
2
yn+
p(p+ 1)(p+ 2)
3!
r
3
yn+:::
is calledNewton's backward interpolationformula
Dr. N. B. Vyas Numerical Methods - Finite Differences

Gregory - Newton Backward Interpolation Formula
Let it beyp. For any real numbern, we have dened operatorE
such thatE
n
f(x) =f(x+nh).
)yx=yxn+ph=f(xn+ph) =E
p
yxn= (1 r)
p
yn
=

1 +pr+
p(p+ 1)
2!
r
2
+
p(p+ 1)(p+ 2)
3!
r
3
+:::

yn
yx=yn+pryn+
p(p+ 1)
2!
r
2
yn+
p(p+ 1)(p+ 2)
3!
r
3
yn+:::
is calledNewton's backward interpolationformula
Dr. N. B. Vyas Numerical Methods - Finite Differences

Gregory - Newton Backward Interpolation Formula
Let it beyp. For any real numbern, we have dened operatorE
such thatE
n
f(x) =f(x+nh).
)yx=yxn+ph=f(xn+ph) =E
p
yxn= (1 r)
p
yn
=

1 +pr+
p(p+ 1)
2!
r
2
+
p(p+ 1)(p+ 2)
3!
r
3
+:::

yn
yx=yn+pryn+
p(p+ 1)
2!
r
2
yn+
p(p+ 1)(p+ 2)
3!
r
3
yn+:::
is calledNewton's backward interpolationformula
Dr. N. B. Vyas Numerical Methods - Finite Differences

Example
Ex.
x= 1 from the following data.
x 0.1 0.2 0.3 0.40.50.6
f(x)1.6991.0730.3750.4431.4292.631
Dr. N. B. Vyas Numerical Methods - Finite Differences

Example
Ex.
horizon for the given heights in feet above the earth's surface.
Find the value of y when x=390 ft.
Height(x):100150200250300350400
Distance(y):10.6313.0315.0416.8118.4219.9021.47
Dr. N. B. Vyas Numerical Methods - Finite Differences

Stirling's Interpolation Formula
To estimate the value of a function near the middle a table, the
central dierence interpolation formula in used.
Letyx=f(x) be a functional relation betweenxandy.
Ifxtakes the valuesx02h; x0h; x0; x0+h; x0+ 2h; : : :and
the corresponding values ofyarey2; y1; y0; y1; y2: : :then we
can form a central dierence table as follows:
Dr. N. B. Vyas Numerical Methods - Finite Differences

Stirling's Interpolation Formula
x y
1
st
difference
2
nd
difference
3
rd
difference
x02h y2
y2(=y
3/2)
x0h y1
2
y2(=
2
y1)
y1(=y
1/2)
3
y2(=
3
y
1/2)
x0 y0
2
y1(=
2
y0)
4
y2(=
4
y0)
y0(=y
1/2)
3
y1(=
3
y
1/2)
x0+h y1
2
y0(=
2
y1)
y1(=y
3/2)
x0+ 2h y2
Dr. N. B. Vyas Numerical Methods - Finite Differences

Stirling's Interpolation Formula
The Stirling's formula in forward dierence notation is
yp=y0+p

y0+ y1
2

+
p
2
2!

2
y1
+
p(p
2
1
2
)
3!


3
y1+
3
y2
2

+
p
2
(p
2
1
2
)
4!

4
y2+: : :
Dr. N. B. Vyas Numerical Methods - Finite Differences

Stirling's Interpolation Formula
The Stirling's formula in forward dierence notation is
yp=y0+p

y0+ y1
2

+
p
2
2!

2
y1
+
p(p
2
1
2
)
3!


3
y1+
3
y2
2

+
p
2
(p
2
1
2
)
4!

4
y2+: : :
Dr. N. B. Vyas Numerical Methods - Finite Differences

Stirling's Interpolation Formula
The Stirling's formula in forward dierence notation is
yp=y0+p

y0+ y1
2

+
p
2
2!

2
y1
+
p(p
2
1
2
)
3!


3
y1+
3
y2
2

+
p
2
(p
2
1
2
)
4!

4
y2+: : :
Dr. N. B. Vyas Numerical Methods - Finite Differences

Example
Ex.
Using Stirling's formula ndy35
x:1020304050
y:600512439346243
Dr. N. B. Vyas Numerical Methods - Finite Differences

Example
Ex.
Find y for x=0.0341
x:0.01 0.02 0.03 0.04 0.05
y:98.434248.439231.777523.449218.4542
Dr. N. B. Vyas Numerical Methods - Finite Differences

Central Dierence
Gauss's Forward interpolation formula:
Pn(x) =y0+py0+
p(p1)
2!

2
y1+
(p+ 1)p(p1)
3!

3
y1+
(p+ 1)p(p1)(p2)
4!

4
y2+:::
Gauss's Backward interpolation formula:
Pn(x) =y0+py1+
p(p+ 1)
2!

2
y1+
(p+ 1)p(p1)
3!

3
y2+
(p+ 2)(p+ 1)p(p1)
4!

4
y2+:::
Dr. N. B. Vyas Numerical Methods - Finite Differences

Central Dierence
Gauss's Forward interpolation formula:
Pn(x) =y0+py0+
p(p1)
2!

2
y1+
(p+ 1)p(p1)
3!

3
y1+
(p+ 1)p(p1)(p2)
4!

4
y2+:::
Gauss's Backward interpolation formula:
Pn(x) =y0+py1+
p(p+ 1)
2!

2
y1+
(p+ 1)p(p1)
3!

3
y2+
(p+ 2)(p+ 1)p(p1)
4!

4
y2+:::
Dr. N. B. Vyas Numerical Methods - Finite Differences

Central Dierence
Gauss's Forward interpolation formula:
Pn(x) =y0+py0+
p(p1)
2!

2
y1+
(p+ 1)p(p1)
3!

3
y1+
(p+ 1)p(p1)(p2)
4!

4
y2+:::
Gauss's Backward interpolation formula:
Pn(x) =y0+py1+
p(p+ 1)
2!

2
y1+
(p+ 1)p(p1)
3!

3
y2+
(p+ 2)(p+ 1)p(p1)
4!

4
y2+:::
Dr. N. B. Vyas Numerical Methods - Finite Differences

Central Dierence
Gauss's Forward interpolation formula:
Pn(x) =y0+py0+
p(p1)
2!

2
y1+
(p+ 1)p(p1)
3!

3
y1+
(p+ 1)p(p1)(p2)
4!

4
y2+:::
Gauss's Backward interpolation formula:
Pn(x) =y0+py1+
p(p+ 1)
2!

2
y1+
(p+ 1)p(p1)
3!

3
y2+
(p+ 2)(p+ 1)p(p1)
4!

4
y2+:::
Dr. N. B. Vyas Numerical Methods - Finite Differences

Example
Ex.
that:
x:1234
y:14916
Dr. N. B. Vyas Numerical Methods - Finite Differences

Example
Ex.
population for the year 1936 given the following table:
Year : 190119111921193119411951
Population(in 1000s):12 15 20 27 39 52
Dr. N. B. Vyas Numerical Methods - Finite Differences