GUÍA DIDÁCTICA: INTERVALOS REALES
El conjunto de todos los números reales mayores
que un número real a, se considera un intervalo infinito de la
forma (a, +∞). El símbolo +∞ significa que el conjunto se
extiende indefinidamente a la derecha. Asimismo se pueden
definir otros intervalos infinitos, como lo son: [a,+ ∞), (- ∞,a), (-
∞,a] y (- ∞,+ ∞), en los que - ∞ significa que el conjunto se
extiende indefinidamente hacia la izquierda.
Fíjate en el siguiente ejemplo: [-2,+ ∞).
___________[_____________________________
-2 + ∞
Ahora observa cómo se halla la intersección de los intervalos
(-3,6] y [-5,4), o sea (-3,6] ∩ [-5,4). Para ello se trazan ambos
intervalos y se identifica el que contiene la parte común.
____[___(________________________)________]___
-5 -3 0 4 6
Luego, la intersección o la parte común es el intervalo (-3,4).
En otro caso, fíjate cómo se halla la unión de los intervalos (-
2,7] y (-5,4), o sea, (-2,7] U (-5,4). Esto implica determinar el
conjunto de los números reales que estén en al menos uno de
esos intervalos.
__(_______(____________________)__________]__
-5 -2 0 4 7
Al representar ambos intervalos se observa que la unión de
los conjuntos es el intervalo (-5,7]. Se colocó corchete a la
derecha porque también contiene al 7