Introduction to barotropic and baroclinic instability

2,830 views 40 slides Dec 01, 2021
Slide 1
Slide 1 of 40
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30
Slide 31
31
Slide 32
32
Slide 33
33
Slide 34
34
Slide 35
35
Slide 36
36
Slide 37
37
Slide 38
38
Slide 39
39
Slide 40
40

About This Presentation

Introduction to barotropic and baroclinic instability


Slide Content

Introduction of
barotropic and
baroclinic instability
By :-Navinya chimurkar
Shukla poddar and
Girish Patidar

Concept of Instability
Therealatmospherenearlyalwayshas
horizontalandverticalwindshears.
Naturalforcesoperatinginatmospheretend
tocreatethesewindshears.
Itis,however,observedthatequilibrium
configurationofatmosphereinmotionbreaks
downwhentheseshearsexceedcertain
criticalvalues.
Thisisthebasicconceptof‘Dynamic
Instability’intheatmosphere.

Thisprocessgoesonandtheatmosphere
manifestscorrespondingchangesinwinds
andweatherconditionsondifferentscalesof
spaceandtime.
Awaveintheatmospherecanbecomeunstable,
providedithasanenergysource,uponwhichitcan
‘FEED’.
Wavesofmeteorologicalconcernhavetheenergy
sourceas‘Shear’inbackgroundwind.
Concept of Instability

Instability,ontheotherhand,isfavoredby
CoriolisParameter(f),largeverticalwindshear
andlowhydrostaticstability.
Ifafluidisleftafterforcingtomoveinthree
dimensions,itcaneithermoveinvertical,orin
horizontaldirection(withoutgainingheight),
ormoveonaninclinedplane,aftertheforce
hasbeenremoved duetoconditions
prevailingintheatmosphere.
Concept of Instability

•Convective instability :-Convective clouds grow as
parcels tap into the background CAPE
•Kelvin-Helmholtz instability :-Wave like clouds grow
(and “break”) as parcels tap into the background
vertical shear.
•Barotropic instability :-Disturbances grow by
extracting kinetic energy from the background flow
suction-vortices in tornadoes
meso-vortices in hurricanes
short-waves in jet stream.
•Baroclinic instability :-Disturbances grow by
extracting potential energy from the background
flow
Synoptic-scale waves
Different Types of Instability

Whentheunstablewindshearsare
essentiallyinthehorizontal
Barotropic Instability
Baroclinic Instability
Whentheunstablewindshearsare
essentiallyintheverticaland
associatedverticalmotionsaredry
adiabatic

Barotropic atmosphere
Theatmosphere,inwhich,thedensityisa
functionofpressurealone.
Surfacesofconstantofpressurearealso
surfacesofconstantdensity.
Thereisnohorizontalgradientoftemperature
andhencenoverticalwindshear.
Thus,thegeostrophicwindisindependentof
height.p

Baroclinic atmosphere
Theatmosphere,inwhich,thedensityisa
functionofpressureandtemperature.
Surfacesofconstantofpressurecutacross
surfacesofconstantdensity,forming
‘Solenoids’.
Horizontaltemperaturegradientexists,andso
doestheverticalwindshear.
RT
p
T,p

Baroclinic
instability

Baroclinic instability
BCIarisesfromverticalwindshearinarotating
atmosphere.
PotentialEnergy(PE)ofbasicstateflowis
convertedtoPEandKEofperturbation.
InBaroclinicatmosphere,isobaricsurfaces
intersectlinesofequaldensity(i.e.,Isosteric)at
someangle.
Presenceofverticalwindshearmeans
presenceofhorizontalthermalgradient.Thus,
thermalwindrelationshipisalsoimportant.

Baroclinic instability
ThereiszonalavailablePotentialEnergy(A
Z)in
theatmosphere.
ThisA
Zcangetaccumulatedinatmosphere
onlyuptocertainextent.Beyondthislimit,the
equilibriumisreadytobreakdownatthe
slightestprovocation.
Inaperturbationsuper-imposedonthisbasic
state,coldpolarairflowsequator-wardsand
relativelywarmersub-tropicalairflowspole-
wards,sothatcoldandwarmairispresent
sidebysidealongalatitudinalcircle.

Baroclinic instability
Here,A
ZisconvertedintoA
E(available
potentialenergyofeddy,orperturbation).
Generallyasituationprevails,inwhich,warm
airrisesandcoldairsinksinx-pplane.
So,a
eisconvertedintoKE.hence:-
A
z→a
e→k
e
ThestorehouseofA
Ziscontinuouslyfedby
differentialheatingofdifferentlatitudinal
zones(forwhich,solarheatingistheultimate
cause).
KEiscontinuouslydrainedoutofthesystemby
friction.

Baroclinic instability
IncaseofBTI,momentum istransferred(as
onlyhorizontalshearisinvolved).
IncaseofBCI,heatistransferred(asvertical
shearisinvolved,whichisrelatedtohorizontal
temperaturegradient).
BTIisstudiedonthebasisofconservationof
AbsoluteVorticity,whereas,theBCIisstudied
onthebasisofconservationofPotential
Vorticity,whichisgivenas. 
H
f
q


Baroclinic instability
Intherealatmosphere,therearemany
factorsthatmayinfluencethedevelopment
ofsynopticsystems,suchas:-
Instabilitiesduetolateralshear(inthejet
stream).
Non-linearinteractionoffiniteamplitude
perturbations.
ReleaseofLatentHeatinprecipitating
systems.
BaroclinicInstability.

Baroclinic instability
BCIarisesfromacombinationofverticalshear
androtationoftheearth.
Verticalshearofhorizontalwindimplies
meridionalgradientoftemperature.Thusthere
isazonalavailablepotentialenergyinthe
atmosphere.
BCIisrelatedtomeanmeridionalgradientof
potentialvorticityandmean meridional
gradientoftemperature.

Necessary condition for BCI
NecessaryConditionforBCItoexist
Whereintegralhasbeentakenforentire
domainfrom‘-L’to‘+L’.
Inthiscondition,‘c
i’shouldbenon-zerofor
unstablewaves.Thus,theentirequantityof
LHSmustvanishforBCItoexist.0
0
0
2
2
0
2
2
0














 



 

L
L
Z
L
L
*
*
i dy
cU
ψρ
Z
U
εdydZ
cU
ψρ
y
q
c
*

Necessary condition for BCI
Mostimportantterms,whichdecide
thepresenceofBCI,are:-
MeridionalGradientofPotential
Vorticity.
VerticaldependencyofbasicZonal
Flow‘U’.y
q

 *
Z
U


Othertermsgenerallyarenon-zero,while
integratedinthedomain.

Necessary condition for BCI
Inotherwords,forunstablewaves,‘c
i’must
benon-zero;thus,theintegralofthequantity
insquarebracketsmustvanish.
Sincethequantityincludingdisturbance
magnitudeisnon-negative,BCIispossible,
onlywhenthemeridionalgradientofthe
PotentialVorticityintheentiredomainmust
satisfycertainconstraints.

Barotropic
instability

Barotropic instability
BTIarisesmainlyfromexcessivehorizontalwind
shearsofflow(e.g.,incaseofJetStream).
ExchangesofKineticEnergy(KE)takeplace
betweenbasicflowandwaveperturbations
throughhorizontalnon-divergentmotions.
So,thereisexchangeofKEandwave
perturbationsgrowaftertakingKEfrombasic
zonalflow.
Intheprocess,zonaljet(i.e.,windmaxima)
getsdilutedanditsmomentum issharedbyits
adjacentlayers.

Barotropic instability
Whilethezonalmomentumofthejetflowasa
wholeisconserved,itsKEdecreases.
ThislossofKEbythejetisgainedbythewave
perturbation.

Necessary condition For BTI
EssentialConditionforBTItoexist:-
where‘A’isthewaveamplitudeandintegral
hasbeentakenforentiredomainfrom‘-d’to
‘+d’.
Inthiscondition,and arepositive.So,
inordertohaveBTIintheflow,either‘c
i’or
‘ ’mustbezero.










2
2
y
U
 
2
cU 2
A 
0
2
2
2
2
















dy
cU
y
U
A
c
d
d
i

WavenotGrowing/Decaying
Inthiscondition,‘c
i’iszero,thus,wavewill
neithergrow,nordecay.
Thus,wavewillmoveuniformlyalongx-
direction.
Necessary condition For BTI

WaveGrowing
Inthiscondition,‘c
i’is+ve.
Thus,forBTItoexist,itisnecessarythat
meridionalgradientofAbsoluteVorticitymustbe
zeroatsomelatitudewithinthedomain.0
2
2
2
2








































y
U
f
yy
U
y
f
y
U
 y
U
ff
y
U
y
U
x
v













  
0



















yy
f
y
U
f
y

Necessary condition For BTI

BTI in terms of KE equation & role
of tilt
 
dy
y
U
vu
dt
d
dy
vu
dt
d
dyKE
dt
d
d
d
''
d
d
d
d
''












  






2
22
RateofchangeinKEcanberepresentedas:-y
A
l
A
vu
''




22
22
WhereMomentum Fluxcanfurtherbewritten
as:-

BTI in terms of KE equation & role of
tilt dy
y
U
l
A
dyKE
dt
d
d
d
d
d
 















2
2

EssentialConditionforBTIintermsofKEis:-



y
l

TiltofTrough/Ridge
PositiveTilt(NE-SW)
(ForwardTilt):-
NegativeTilt(NW-SE)
(BackwardTilt):-00 



y
l
 00 



y
l

BTI in terms of KE equation & role
of tilt
Since‘A’and‘µ’are+vequantities,LHSwillbe
+veor–ve,dependingonsignsof‘Tilt’and
‘MeridionalShear’.
ThismeansthatintegralofKEincreasesor
decreaseswithtime,underspecificconditionsof
tiltedtroughs.
Increase/DecreaseinKEwillleadtoincrease/
decreaseofBTIinthedomain.
NecessaryconditionforBTIis:-0


y
U
l

BTI IN TERMS OF KE
EQUATION & ROLE OF TILT

BTI IN TERMS OF KE
EQUATION & ROLE OF TILT

BTIissatisfiedatsomelevelsinthevicinityof
ITCZ.Thus,BTIappearstobeaplausible
mechanismforthedevelopmentofweak
disturbancesalongITCZ.
Barotropicallyunstabledisturbanceswill
continuetogrow,onlyiftheshearofthe
meanzonalflowremainsunstable,sothat
wavescanextractenergyfromthemean
flow.
BTIisnotauniquelytropicalphenomenon.This
isalsopossibleinthevicinityofmid-latitudejet
stream.
Barotropic instability : additional
points

Barotropic instability : additional
points
However,inmid-latitudes,BaroclinicInstability
(BCI)isgenerallythemoreimportant
mechanism.
MeanmonsoonzonalcurrentovertheIndian
regionischaracterizedbyalow-levelW’lyjet,
locatedat850hPaandanupperlevelstrong
E’lyjet,locatedclosetothe150hPalevel.Itis
wellestablishedthatthesejetsaretheseatsof
thesynopticscaleactivedisturbancesduring
thesummermonsoon overIndia(e.g.,
MonsoonLows/Depressions,E’lyWaves,etc).

BTI & BCI : Summary
BTI BCI
1.Meridional shear in
zonal flow is relevant
(i.e., Horizontal
Shear).
Vertical shear of zonal
or meridional wind is
applicable (i.e., du/dz
or dv/dz).
2.No thermal wind
concept.
Shear is represented by
thermal wind (∂V
g/∂z).
3.Waves increase /
derive their KE from
KE of basic flow as a
result of vorticity
transport.
Waves grow as a result
of conversion of PE of
basic flow due to
baroclinicity in to KE.

BTI & BCI : Summary
BTI BCI
4.Dependsuponthe
concentration of
windandstrengthof
β.
Depends upon
concentration of
temperature with
respecttoheightand
strengthofwindwith
height.
5.Wavelength more
than300km&less
than 2500 km.
Maximum growth
ratefor2000km.
Wavelengthmorethan
2000km&lessthan
8000km.Maximum
growthratefor2500-
3000km.

BTI & BCI : Summary
BTI BCI
6.NecessaryCondition:
AbsoluteVorticity(ζ+f)
mustbeconstant,i.e.,
∂(ζ+f)/∂y=0
Necessary Condition :
PotentialVorticity[(ζ+f)/
∆H]mustbeconstant,i.e.,
[∂(ζ+f)/∆H]/∂y=0
7.Momentum transport
andhorizontalplane.
Heattransportandvertical
plane.
8.Nowaveformationofits
own.
Waveformationispresent.
9.Zoneofinterestnear
ITCZorEquator,shear
linewithperturbationin
trade.
NearPForSTR,whensharply
inclinedperturbationsin
mid-latW’lyandshort
waves.

BTI & BCI : Summary
BTI BCI
10.Horizontal(meridional)
shear exceeding
critical value
associatedwithE’ly
waveorLLJintrades
givingrisetounstable
perturbations(growth
oftropicalcyclones).
Under sub-critical
conditions,sinusoidal
wavesarelikelyto
continue without
breakingdown.
11.Low level jet,
Australianjetor
Africanjetgiveriseto
suchinstability.
PFJ/STJreinforcethe
instability.

BTI & BCI : Summary
BTI BCI
12.Temperature
gradientisverysmall;
sonosuchcriterion
exists,althoughE’ly
wave troughsare
examinedinrelation
totheirtemperature
characteristicsand
genesisoftropical
cyclones.
Thermalwaveshould
lagbehindpressure
wavefordeveloping
wave(andprecede
fordecayingsystems).
Coldtroughtravel
slowerthansurface
zonalflow.

•Bluestein, H. B, 1993: Synoptic-Dynamic Meteorology in
Midlatitudes. Volume II: Observations and Theory of
WeatherSystems. Oxford University Press, New York, 594
pp.
•Bretherton, F. P., 1966: Critical layer instability in
baroclinicflows, Quart. J. Roy. Meteor. Soc., 92, 325-334.
•Charney, J. G., 1947: the dynamics of long waves in a
baroclinicwesterly current. J. Meteor., 6, 56-60.
•Eady, E. T., 1949: Long waves and cyclone waves. Tellus,
1, 33-52.
•Lackmann, G., 2011: Mid-latitude Synoptic Meteorology
–Dynamics, Analysis and Forecasting, AMS, 343 pp.
•Orlanski, I., 1968; Instability of frontal waves. J. Atmos.
Sci., 25, 178-200.
References

THANKS