904 Index
Gilbert, William, 714
Glauert, Hermann, 426, 734
Gleanings in Bee Culture
(journal), 32
Glenn, John H., Jr., 722
glide entry, 688–689
gliders
Cayley and, 8–13, 579–580, 647
Chanute and, 21–22
Lilienthal and, 17–20, 27
Pilcher and, 20–21
Wright brothers and, 28–31
gliding fl ight, 489–492
Global Hawk, 552–553, 554
Gloster Aircraft, 802
Gloster E.28/39, 802
Goddard, Robert H., 655, 721, 728, 730,
779, 804–806, 807
Goddard Space Flight Center, 103, 806
Golden Flyer, 41–42
golf balls, 404–405
Golubev, I. N., 15
Gordon Bennett Cup, 42
Gorrell, Edgar S., 417–418
gradient layers, 116, 118–120, 122–123,
124–125
Grahame-White, Claude, 441
gravity, 656
acceleration of, 69, 112–113, 121
altitude and, 110–113
control and, 600
hydrostatic equation, 113–115
law of universal gravitation,
112–113, 679, 714–716
Newton’s second law and, 143–144
planetary entry and, 688
stability and, 596–597
takeoff and, 525
trajectories and. See trajectories
gravity, center of
canard confi guration and, 611–612
control and, 629–636
moment coeffi cient at center of
gravity, 606–623, 632–634,
640–641
neutral point and, 624–625
pitching and, 620–621
stability and, 602, 613–623
static margin and, 625–629
tail and, 617–620
total pitching moment and, 620–621
wing contribution to, 613–616
gravity-assist trajectory, 684–686
Great Plague, 714
Greeks, 3–4, 53, 712, 714, 721
green engines, 791–792
Gregg, Willis Ray, 129
ground effect, 525
ground roll, 522–523, 524–525
landing and, 528–531
takeoff and, 524–527
Grumman A-6E, 838
Grumman F3F-2, 92
Grumman F6F Hellcat, 838
Grumman X-29, 391
Grumman X-29A, 90–91
Guggenheim Foundation, 573, 806
Guy, A. E., 260
Hage, R. E., 646
Hagen, John P., 719
Halley, Edmund, 715
Hallion, Richard, 429–430
Harvard Observatory, 22
Hawk hang glider, 20–21
Hayes, Wallace D., 815
heat, 700. See also entry heating
Heinkel, Ernst, 801
Heinkel He 178, 730, 801
Hele-Shaw, H. E., 737
helicopters, 7, 112, 795
heliocentric system, 712–713
heliopause, 686–687
heliosheath, 686–687
heliosphere, 686–687
Henri Farman III, 34–35, 649
Henson, William Samuel, 12, 13–14, 21,
441, 648–649, 730, 795
Herschel, W. H., 261
High-Speed Aerodynamics (Hilton), 385
high-speed civil transport (HSCT), 549
high-speed fl oat planes, 46–47
high-speed research (HSR), 549
History of Aerodynamics and Its
Impact on Flying Machines, A
(Anderson), 30, 131, 343, 403,
422, 520
Hitler, Adolf, 273–274
hodograph diagram, 483–485
Hooke, Robert, 715
hopping, 15–16, 416, 730
horizontal stabilizer, 91, 598
horsepower, 80–81, 460, 467, 468
hot-air engines, 15, 730
HSCT (high-speed civil transport), 549
HSR (high-speed research), 549
Hubbard, T. O’B., 577
Huffman Prairie, 32
Huygens, Christian, 714, 715
hybrid engine technologies, 791
Hydrodynamica (Bernoulli), 258, 259
hydrogen
hydrogen-fi lled balloons, 5–6
hydrogen-fl uorine rocket
engines, 772
subsonic velocity of moving through,
180–181
hydrostatic equation, 113–115
hyperbolic trajectories, 674–676,
684–686
Hypersonic and High Temperature Gas
Dynamics (Anderson), 171, 818
hypersonic fl ight, 47, 765–769
fi rst manned, 430–432
records, 487
SCRAMjets, 768, 769, 840, 843–844
thermal barrier, 430
wind tunnels, 267
hypersonic fl ow, 178, 815–845
chemical reactions, 823
detachment distance, 820
displacement thickness, 821–822
drag, 830–832, 833–844
entropy layer, 820–821
high-temperature effects, 822–823
induced pressure increment, 822
Knudsen number, 825–826
lift, 830–832, 833–844
low-density fl ow, 823–827
Newtonian law, 827–833
physical aspects, 819–827
pressure, 844
shock waves, 819–827, 839–840
viscous interaction, 821–822
hypersonic vehicles, 815–845
aerospace plane, 816–818
angle of attack, 834–835
drag, 830–832, 833–844
fi rst, 818
jets, 840–841
lift, 830–832, 833–844
Newtonian sine-squared law, 818
propulsion integration, 840–841
ramjets, 765–769, 815–816
Reynolds number, 834–837
transatmospheric, 816–818
wave riders, 819
Icarus, 3–4
ICBMs (intercontinental ballistic
missiles), 265–267, 705, 719, 818
incompressible fl ow, 275, 365
airspeed, 191–197
properties, 139–142
indicated power, 743
induced drag, 362, 363–372, 422,
525, 568
Industrial Revolution, 21
infi nite wings, 289–290, 300, 308,
315–316, 360
inlets, turbojet engine, 753
Institute of Aeronautical Sciences, 17,
806–807
intake stroke, 739–740, 745
integral calculus, 257
intercontinental ballistic missiles
(ICBMs), 265–267, 705, 719, 818
intermolecular force fi eld, 64
internal burners, 779–780
internal combustion engines, 44–45,
164–166, 730, 738–749, 797–800
internal energy, 154, 159–160
International Geophysical Year, 719
Introduction to the Design of Fixed-Wing
Micro Air Vehicles (Mueller et
al.), 560, 563
inviscid fl ow, 136–137, 821–822
isentropic fl ow, 176–177, 198–199, 206,
275, 331
adiabatic fl ow, 160–166, 199, 275
compressibility, 211–213
supersonic wind tunnels, 214–226
isothermal layers, 116–121, 124–125
Jacobs, Eastman N., 418
James, William, 423
jet airplanes, 729, 730
hypersonic vehicles, 840–841
range of, 508–513
rate of climb, 489
turbojets, 752–763
jet engines, 729, 730
engine effi ciency, 788–792
historical perspective, 800–803
power available, 459–460, 468–470,
472, 473
ramjets, 765–769
turbojet engines, 752–763
jet propulsion, 468–470, 472, 473
control volume, 751–752
historical perspective, 800–803
ramjets, 765–769
thrust equation, 749–752
turbofan engines, 763–765
turbojet engines, 752–763
Jet Propulsion Laboratory, 54, 98–100,
683, 718
Jex, H. R., 580
John F. Kennedy Space Center, 103, 684
Johnson Spacecraft Center, 103
Jones, B. Melvill, 565–566
Joukowski, Nikolai, 262
Journal of Natural Philosophy, 8–9, 798
Judge, A. W., 578
June Bug, 40, 41
Junkers, Hugo, 91
Jupiter, 684, 685, 707
Jupiter C rocket, 684, 719–720
Kelvin temperature, 71
Kennedy, John F., 723
Kepler, Johannes, 679, 713, 721
Kepler’s laws, 679–683, 713, 714–715
Key, Francis Scott, 803
Khan, Genghis, 803
Kill Devil Hills, North Carolina, 1–3, 26,
29–31, 36, 45, 796, 799
kinetic energy, 257–258, 540–541
Boltzmann constant, 59
entry heating, 700–708
Lagrange’s equation, 664–665, 667
propellers, 735
temperature, 59–60, 822–823
kites, 38–39
Kitty Hawk, North Carolina, 1–3, 6,
28–29, 289
Knight, Pete, 432, 487
Knudsen number, 825–826
Korean War, 200, 581
Kothari, A. P., 561
Kuchemann, D., 838
Kutta condition, 412
Kutta-Joukowsky theorem, 411–412, 421
Lagrange, Joseph L., 716
Lagrange’s equation, 663–666, 667
lagrangian function, 664–666, 668
Lamb, Horace, 270–271
laminar fl ow airfoils, 312, 368–370, 569
laminar shear stress, 232–236
Lanchester, Frederick W., 421–422
landing, 13, 528–531
Lang, James D., 540n
Langen, E., 45
Langley Field, 102, 129, 572
Langley Memorial Aeronautical
Laboratory, 103, 263–264, 265,
267, 418, 419, 426
Langley Research Center, 34, 343, 768
Langley, Samuel Pierpont, 22–26,
36, 730
aeronautical triangle, 35–44
background, 22
as “chauffeur,” 26
engines and, 798–799
experiments, 22–26, 27–28, 29,
30–32, 35–36, 38–39, 103,
262, 799
Manly and, 23–26
propellers, 795
lapse rate, 118–119
Launch Operations Center, 103
launch vehicles, 94–96
Laval nozzles, 264
law of universal gravitation, 112–113,
679, 714–716
leading edge. See airfoils
Ledeboer, John, 577
Lenoir, Jean Joseph Etienne, 44, 798
Levy, H., 578
Lewis Engine Research Laboratory,
103
Lewis Flight Propulsion Laboratory, 800
Lewis, George, 103
Liebniz, Gottfried von, 715
lift
aspect ratio, 376–379. See also
aspect ratio
axial force, 294, 310–312
Cayley and, 6, 9, 288–289
change in slope of, 372–381
circulation theory of, 410–412
coeffi cient of, 294–298
defi ned, 292
design evolution, 579–584
dimensional analysis, 295–300
drag and, 363–372. See also drag;
lift-to-drag ratio (L/D)