Introduction to ordinary differential equation

SAYEEDULISLAM10 108 views 35 slides Jun 12, 2024
Slide 1
Slide 1 of 35
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30
Slide 31
31
Slide 32
32
Slide 33
33
Slide 34
34
Slide 35
35

About This Presentation

PPT on Differential Equation


Slide Content

Fin500J Topic 6 Fall 2010 Olin Business School 1
Fin500J: Mathematical Foundations in Finance
Topic 6: Ordinary Differential Equations
Philip H. Dybvig
Reference: Lecture Notes by Paul Dawkins, 2007, page 20-33, page 102-121,
page 137-155 and page 340-344
http://tutorial.math.lamar.edu/terms.aspx
Slides designed by Yajun Wang

Introduction to Ordinary
Differential Equations (ODE)
Recall basic definitions of ODE,
order
linearity
initial conditions
solution
Classify ODE based on( order, linearity, conditions)
Classify the solution methods
Fin500J Topic 6 Fall 2010 Olin Business School 2

Derivatives
Derivativesdx
dy
Fin500J Topic 6 Fall 2010 Olin Business School
Partial Derivatives
uis a function of
more than one
independent variable
Ordinary Derivatives
yis a function of one
independent variabley
u


3

Differential Equations
Differential
Equations16
2
2
xy
dx
yd
Fin500J Topic 6 Fall 2010 Olin Business School
involve one or more
partial derivativesof
unknown functions
Ordinary Differential Equations
involve one or more
Ordinary derivativesof
unknown functions0
2
2
2
2






x
u
y
u
4
Partial Differential Equations

Ordinary Differential Equations
Fin500J Topic 6 Fall 2010 Olin Business School )cos(25
:
2
2
xy
dx
dy
dx
yd
ey
dx
dy
Examples
x


Ordinary Differential Equations (ODE)involve one or
more ordinary derivatives of unknown functions with
respect to one independent variable
y(x): unknown function
x: independent variable
5

Order of a differential equation
Fin500J Topic 6 Fall 2010 Olin Business School 12
)cos(25
:
4
3
2
2
2
2











y
dx
dy
dx
yd
xy
dx
dy
dx
yd
ey
dx
dy
Examples
x
The orderof an ordinary differential equations is the order
of the highest order derivative
Second order ODE
First order ODE
Second order ODE
6

Solution of a differential equation0)(
)(
)(
:Proof
)(






tt
t
t
eetx
dt
tdx
e
dt
tdx
etxSolution
Fin500J Topic 6 Fall 2010 Olin Business School
A solutionto a differential equation is a function that
satisfies the equation.0)(
)(
:
tx
dt
tdx
Example
7

Linear ODE
Fin500J Topic 6 Fall 2010 Olin Business School 1
)cos(25
:
3
2
2
2
2
2











y
dx
dy
dx
yd
xyx
dx
dy
dx
yd
ey
dx
dy
Examples
x
An ODE is linear if the unknown function and its derivatives
appear to power one. No product of the unknown function
and/or its derivatives
Linear ODE
Linear ODE
Non-linear ODE
8)()()()(')()()()()(
01
1
1 xgxyxaxyxaxyxaxyxa
n
n
n
n 

 

Boundary-Value and Initial value Problems
Boundary-Value Problems
The auxiliary conditions are not at
one point of the independent
variable
More difficult to solve than initial
value problem5.1)2(,1)0(
'2''
2



yy
eyyy
x
Fin500J Topic 6 Fall 2010 Olin Business School
Initial-Value Problems
The auxiliary conditions are
at one point of the
independent variable5.2)0(',1)0(
'2''
2



yy
eyyy
x
same
different
9

Classification of ODE
ODE can be classified in different ways
Order
First order ODE
Second order ODE
N
th
order ODE
Linearity
Linear ODE
Nonlinear ODE
Auxiliary conditions
Initial value problems
Boundary value problems
Fin500J Topic 6 Fall 2010 Olin Business School 10

Solutions
Analytical Solutions to ODE are available for linear
ODE and special classes of nonlinear differential
equations.
Numerical method are used to obtain a graph or a
table of the unknown function
We focus on solving first order linear ODE and second
order linear ODE and Euler equation
Fin500J Topic 6 Fall 2010 Olin Business School 11

First Order Linear Differential Equations
Def: A first order differential equation is
said to be linearif it can be written)()( xgyxpy 
Fin500J Topic 6 Fall 2010 Olin Business School 12

First Order Linear Differential Equations
How to solve first-order linear ODE ?
Sol:)1()()( xgyxpy  )2()()()()()( xgxyxpx
dx
dy
x  
Fin500J Topic 6 Fall 2010 Olin Business School 13
Multiplying both sides by , called an integrating factor,
gives )(x
assuming we get )3(),(')()( xxpx   )4()()()(')( xgxyx
dx
dy
x  

First Order Linear Differential Equations
Fin500J Topic 6 Fall 2010 Olin Business School 14
By product rule, (4) becomes
Now, we need to solve from (3) )(
)(
)('
)(')()( xp
x
x
xxpx 


 )6(
)(
)()(
)(
)()()()(
)5()()())'()((
1
1
x
cdxxgx
xy
cdxxgxxyx
xgxxyx









 )(x

First Order Linear Differential Equations
Fin500J Topic 6 Fall 2010 Olin Business School 15)7()(
)()(ln
)())'((ln)(
)(
)('
)(
3
)(
2
2 




dxxpcdxxp
ecex
cdxxpx
xpxxp
x
x





to get rid of one constant, we can use )9(
)()(
)(
thenisequation aldifferentiorder first linear a osolution t The
)8()(
)(
)(






dxxp
dxxp
e
cdxxgx
xy
ex

Summary of the Solution Process
Fin500J Topic 6 Fall 2010 Olin Business School 16
Put the differential equation in the form (1)
Find the integrating factor, using (8)
Multiply both sides of (1) by and write the left
side of (1) as
Integrate both sides
Solve for the solution )(x )(x ))'()(( xyx )(xy

Example 1
Sol:x
eyy
2
  
 
xx
xx
xxx
x
dxdx
dxxpdxxp
ece
cee
cdxeee
cdxeee
cdxxgeexy
2
2
2
)1()1(
)()(
)()(



























Fin500J Topic 6 Fall 2010 Olin Business School 17

Example 2
Sol:2
1
)1(,2'
2
 yxxyxy  
.
12
7
3
1
4
1
2
1
c,get tocondition initial Apply the
3
1
4
1
3
1
4
1
)1()1(
)()(
1
2
'
22342
22
22
)()(


































cc
cxxxcxxx
cdxxxxcdxxee
cdxxgeexy
xy
x
y
dx
x
dx
x
dxxpdxxp
Fin500J Topic 6 Fall 2010 Olin Business School 18

Second Order Linear Differential Equations
Homogeneous Second Order Linear Differential
Equations
oreal roots, complex roots and repeated roots
Non-homogeneous Second Order Linear Differential
Equations
oUndetermined Coefficients Method
Euler Equations
Fin500J Topic 6 Fall 2010 Olin Business School 19

)(''' xgcybyay  wherea,bandcareconstantcoefficients
Let the dependent variable y be replaced by the sum of the
two new variables: y = u + v
Therefore   )('''''' xgcvbvavcubuau 
If v is a particular solution of the original differential equation
The general solution of the linear differential equation will be the
sum of a “complementary function” and a “particular solution”.
purpose
Second Order Linear Differential Equations
The general equation can be expressed in the form 0''' cubuau
Fin500J Topic 6 Fall 2010 Olin Business School 20

0''' cybyay Let the solution assumed to be:rx
ey rx
re
dx
dy
 rx
er
dx
yd
2
2
2
 0)(
2
cbrare
rx
characteristic equation
Real, distinct roots
Double roots
Complex roots
The Complementary Function (solution of the
homogeneous equation)
Fin500J Topic 6 Fall 2010 Olin Business School 21

xr
ey
1
 xr
ey
2
 xrxr
ececy
21
21 Real, Distinct Roots to Characteristic Equation
•Let the roots of the characteristic equation be real, distinct
and of values r
1and r
2. Therefore, the solutions of the
characteristic equation are:
•The general solution will be06'5''  yyy 065
2
rr 3
2
2
1


r
r xx
ececy
3
2
2
1
•Example
Fin500J Topic 6 Fall 2010 Olin Business School 22

rx
ey rxrx
rVeVey  '' rx
Vey Letrxrxrx
VerVreVey
2
'2'''' and 
where V is a
function of x0''' cybyay 0)(''xV dcxV  rxrxrxrx
xececedcxbey
21)( 
Equal Roots to Characteristic Equation
•Let the roots of the characteristic equation equal and of value r
1
= r
2= r. Therefore, the solution of the characteristic equation is:0cbrar
2
 0bar2 
Fin500J Topic 6 Fall 2010 Olin Business School 23

)).sin()(cos(
,))sin()(cos(
)(
2
)(
1
xixeey
xixeey
xxi
xxi







 ).sin(cos
:is d.e. theosolution t geneal theTherefore, equation.
aldifferenti the tosolutions twoare and that see easy to isIt
)sin()(
2
1
)(),cos()(
2
1
)(
21
2121
xecx)(ecy(x)
vu
xeyy
i
xvxeyyxu
λxλx
xx




 Complex Roots to Characteristic Equation
Let the roots of the characteristic equation be complex in the
form r
1,2=λ±µi. Therefore, the solution of the characteristic
equation is:
Fin500J Topic 6 Fall 2010 Olin Business School 24

(I) Solve09'6''  yyy
characteristic equation096
2
rr 3
21 rr x
exccy
3
21 )(


Examples
(II) Solve05'4''  yyy
characteristic equation054
2
rr ir 2
2,1 )sincos(
21
2
xcxcey
x

Fin500J Topic 6 Fall 2010 Olin Business School 25

When g(x) is a polynomial of the form where
all the coefficients are constants. The form of a particular solution is)(''' xgcybyay  cky/ n
nxaxaxaa  ...
2
210 n
nxxxy   ...
2
210
Non-homogeneous Differential Equations (Method of
Undetermined Coefficients)
Wheng(x)isconstant,sayk,aparticularsolutionofequationis
Fin500J Topic 6 Fall 2010 Olin Business School 26

Example
Solve3
844'4'' xxyyy  32
sxrxqxpy  2
32' sxrxqy  sxry 62'' 3322
84)(4)32(4)62( xxsxrxqxpsxrxqsxr 
equating coefficients of equal powers of x84
0124
4486
0442




s
sr
qrs
pqr 32
26107 xxxy
p
 044
2
rr
characteristicequationx
c exccy
2
21 )( 322
21 26107)( xxxexcc
yyy
x
pc

 04'4''  yyy
complementary function2r
Fin500J Topic 6 Fall 2010 Olin Business School 27

Non-homogeneous Differential Equations
(Method of Undetermined Coefficients)rx
Aey
•Wheng(x)isoftheformTe
rx
,whereTandrareconstants.The
form of a particular solution iscbrar
T
A


2
•Wheng(x)isoftheformCsinnx+Dcosnx,whereCandDare
constants, the form of a particular solution isnxFnxEy cossin 2222
2
)(
)(
bnanc
nbDCanc
E


 2222
2
)(
)(
bnanc
nbDCanc
F



Fin500J Topic 6 Fall 2010 Olin Business School 28

Example
Solve18'6''3 yy Cxy Cy' 0''y 18)C(6)0(3  3C xy
p
3 063
2
rr
characteristic equationx
c eccy
2
21 x
pc
eccx
yyy
2
213 
 0'6''3 yy
complementary function2,0
21 rr
Fin500J Topic 6 Fall 2010 Olin Business School 29

Example
Solvex
eyyy
4
78'10''3

 x
Cxey
4
 x
Cexy
4
)41('

 x
Cexy
4
)816(''

 71024  CC 2
1
C x
p xey
4
2
1

 0)4)(23(8103
2
 rrrr
characteristic equationxx
c
BeAey
43/2 
 xxx
pc
BeAexe
yyy
43/24
2
1


 08'10''3  yyy
complementary function4,3/2
21  rr
Fin500J Topic 6 Fall 2010 Olin Business School 30

Example
Solvexyyy 2cos526'''  xDxCy 2sin2cos )2cos2sin(2' xDxCy  )2sin2cos(4'' xDxCy  0102
52210


DC
DC 1
5


D
C xxy
p
2sin2cos5  0)3)(2(6
2
 rrrr
characteristic equationxx
c BeAey
32 
 xxBeAe
yyy
xx
pc
2sin2cos5
32


 06''' yyy
complementary function3,2
21 rr
Fin500J Topic 6 Fall 2010 Olin Business School 31

Euler Equations
Def: Eulerequations
Assuming x>0 and all solutions are of the
form y(x) = x
r
Plug into the differential equation to get the
characteristic equation0'''
2
 cybxyyax .0)()1(  crbrar
Fin500J Topic 6 Fall 2010 Olin Business School 32

Solving Euler Equations: (Case I)
Fin500J Topic 6 Fall 2010 Olin Business School 33
•The characteristic equation has two different real
solutions r
1and r
2.
•In this case the functions y = x
r1and y = x
r2are both
solutions to the original equation. The general solution
is:21
21)(
rr
xcxcxy  .xcxcy(x)
.r,rr-)r(r-
yxyyx
3
2
2
5
1
21
2
3
2
5
015312
:isequation sticcharacteri the,015'3''2




Example:

Solving Euler Equations: (Case II)
Fin500J Topic 6 Fall 2010 Olin Business School 34
•The characteristic equation has two equal roots r
1=
r
2=r.
•In this case the functions y = x
r
and y = x
r
lnx are both
solutions to the original equation. The general solution
is:)ln()(
21 xccxxy
r
 x.xcxcy(x)
.rr)r(r-
yxyyx
ln
401671
:isequation sticcharacteri the,016'7''
4
2
4
1
2



Example:

Solving Euler Equations: (Case III)
Fin500J Topic 6 Fall 2010 Olin Business School 35
•The characteristic equation has two complex roots r
1,2=
λ±µi. x))(μcx)(μ(cxy(x)
xixxxex
λ
xii
lnsinlncos
:be illsolution w general theroots,complex of case in the So,
)lnsin()lncos(
21
ln)(




 .xxcxxcy(x)
i.rr)r(r-
yxyyx
)ln3sin()ln3cos(
310431
:isequation sticcharacteri the,04'3''
1
2
1
1
2,1
2




Example:
Tags