Introductionto metazoa 2012

dindin04 11,542 views 38 slides Jul 05, 2012
Slide 1
Slide 1 of 38
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30
Slide 31
31
Slide 32
32
Slide 33
33
Slide 34
34
Slide 35
35
Slide 36
36
Slide 37
37
Slide 38
38

About This Presentation

No description available for this slideshow.


Slide Content

Introduction to Metazoa

Metazoans Multicellular organisms Animals in kingdom Animalia Believe to have evolved from protozoans ; specially choanoflagellates

Metazoan Chracteristics Eukaryotic Heterotrophs Polarized along an anterior-posterior locomotory axis Most motile

Ground Plan Specialized cells organized as tissues Primary Tissues: epithelial & connective Epithelium: sheets of cells bound to each other by cell-adhesion molecules.

Ontogeny “Origin of being” Development of an organism Zygote formed by the union of egg and sperm nuclei Multicellular embryo is formed in process known as cleavage (division)

Embryo Development Blastula: 1 cell layer thick hollow ball or solid ball of cells Gastrulation : invagination of one wall of blastula -> 2 layered gastrula Morphogenesis Ectoderm & endoderm form around gelatinous blastocoel .

Cells, Tissues, Skeletons Protozoans posses very little specialization Most protozoans rely on organelles to carry out all functions. Different tissue types allow for a partioning of labor Damage cells can be regenerated; however if a paramecium is damaged the whole oraganism dies.

Indirect Development Life cycle includes a larval stage Larva: independent stage with different anatomy & niche. Biphasic life cycle: benthic adult & planktonic larva. Larva settles and undergoes metamorphosis into an immature jevenile .

Direct Development

Embryo develops directly into jeveniles without a larval stage Considered to be a derived trait Indirect development with external fertilization & planktonic larva is the ancestral pattern.

Reproductive Adaptations

Improve chances of fertilization & embryo survival: increase synchrony & proximity Hermaphroditism : common in species with small population densities & sessile lifestyles. Any nearby individual is a potential mate Most hermaphrodites cross-fertilize than self fertilize.

Maternal Provisioning Oviparous Viviparous

Adaptations providing physical protection & nutrients to offspring are very valuable. Oviparous: eggs spawned before or just after fertilization Viviparous: internal fertilization, embryos, gestate in maternal body & release larva or juveniles. Brooding: eggs released from mother, but are retained on or taken back to her body

Functional Consequences of Body Size Most metazoans are 0.5 mm – 1m in size Prokaryote (seed) Protozoan (grapefruit) Animal (stadium) Cell specialization improves efficiency Requires functional compartmentalization & cellular integration.

Size, Surface Area and Volume SA:V is significantly affected by increases in body size. As a cell grows larger, its area is squared & its volume is cubed. SA (supply) will not be able to support cell volume (demand) Limits exchange of gases, nutrients and wastes.

DIFFUSION

Size and Transport Rates of diffusion slow drastically over great distances. Effective diffusion distance is roughly 0.5mm for most animals. Body diameters larger than 1mm may be diffusion-limited. Circulatory system needed for bodies larger than 1mm in diameter.

Size and Metabolism Metabolic rate increases with body size. Poikilotherms (cold-blooded animals) consume 8 times more mass-specific energy than protozoans . Homeotherms (mammals & birds) cosume 29 times more energy than a poikilotherm of equal term.

Advantages of a Large Body Size Mass specific decreases in metabolic rate Reduced risk of predation by protozoa Larger metazoans can prey upon protozoans Motile metazoans move faster than protozoans Multicellularity allows ability to regenerate.

Ontogeny & Phylogeny Metazoan ontology includes developmental stages subject to natural selection Heterochrony : changes in the timing of developmental events- allows potential for evolutionary change. Two types of heterochrony Pedomorphosis & Peramorphosis

Pedomorphosis A trait of descendent species resembles an ancestral larval or jevenile developmental trait Results in smaller and simpler descendents with short generation times. Common in species living in unpredictable or changing enviroments Adapted to colonize entirely new habitats .

Peramorphosis

A trait of descendant species that develops beyond the ancestral trait Results in larger & more complex descendants with longer generation times. Favored in constant or predicatable enviroments . Larger body size is a major trend in metazoan evolution.

Origins of Metazoa

Colonial Theory: Metazoans are derived from colonial flagellated protozoans . Choanoflagellates & metazoa are sister taxa Spherical colony of flagellated cells divided by mitosis, but daughter cells held within ECM .

Sources http://www.google.com.ph/imgres?q=metazoa&hl=fil&biw=1366&bih=585&gbv=2&tbm=isch&tbnid=ITnAcb6yU3INiM:&imgrefurl=http://www.ucmp.berkeley.edu/phyla/phyla.html&docid=nVJrWUumXbrhFM&imgurl=http://www.ucmp.berkeley.edu/phyla/animcoll.jpg&w=405&h=342&ei=feKwT_6kOOXjmAXEjsmlCQ&zoom=1&iact=rc&dur=169&sig=114980428662261257468&page=1&tbnh=122&tbnw=144&start=0&ndsp=23&ved=1t:429,r:0,s:0,i:67&tx=100&ty=36 http://www.google.com.ph/imgres?q=metazoa&start=169&hl=fil&biw=1366&bih=585&gbv=2&tbm=isch&tbnid=N48FvkPO5feVCM:&imgrefurl=http://herramientas.educa.madrid.org/animalandia/taxon.php%3Fnombre%3DMetazoa&docid=o7vVae5ATezUfM&imgurl=http://herramientas.educa.madrid.org/animalandia/imagenes/m/Metazoa_001.jpg&w=640&h=480&ei=6-OwT8H1KvHKmQXXu6C4CQ&zoom=1&iact=rc&dur=282&sig=114980428662261257468&page=7&tbnh=127&tbnw=166&ndsp=31&ved=1t:429,r:52,s:169,i:49&tx=114&ty=64 http://www.google.com.ph/imgres?q=radial+symmetry&hl=fil&gbv=2&biw=1366&bih=585&tbm=isch&tbnid=z7aThQgWA51WuM:&imgrefurl=http://biology.unm.edu/ccouncil/Biology_203/Summaries/SimpleAnimals.htm&docid=SVCVdHFgzLxg-M&imgurl=http://biology.unm.edu/ccouncil/Biology_203/Images/SimpleAnimals/RadialSymmetry.JPG&w=202&h=369&ei=pOmwT76qB8zomAWytOSNCQ&zoom=1&iact=hc&vpx=807&vpy=138&dur=2006&hovh=295&hovw=161&tx=98&ty=149&sig=114980428662261257468&page=3&tbnh=126&tbnw=69&start=54&ndsp=29&ved=1t:429,r:11,s:54,i:206 http://www.google.com.ph/imgres?q=radial+symmetry&hl=fil&gbv=2&biw=1366&bih=585&tbm=isch&tbnid=MDuP48f8I4JapM:&imgrefurl=http://dj003.k12.sd.us/SCHOOL%2520NOTES/bk2chpt%25204.htm&docid=TXi7jpjdzROiOM&imgurl=http://dj003.k12.sd.us/images/32-05-BodySymmetry-L.gif&w=643&h=600&ei=pOmwT76qB8zomAWytOSNCQ&zoom=1&iact=hc&vpx=891&vpy=130&dur=6250&hovh=217&hovw=232&tx=126&ty=140&sig=114980428662261257468&page=1&tbnh=119&tbnw=128&start=0&ndsp=24&ved=1t:429,r:6 ,s:0,i:77 http://www.google.com.ph/imgres?q=cleavage+furrow+formation&hl=fil&gbv=2&biw=1366&bih=585&tbm=isch&tbnid=ofLZDQdHfOwCVM:&imgrefurl=http://celldynamics.org/celldynamics/events/workshops/archive/2003/cytomod_abstracts/GvD_VDF/index.html&docid=ieqZJNPU61ApSM&imgurl=http://celldynamics.org/celldynamics/events/workshops/archive/2003/cytomod_abstracts/GvD_VDF/images/GvD-VEF-fig2.jpg&w=515&h=515&ei=peuwT7ubJrHGmQW42LmaCQ&zoom=1&iact=hc&vpx=632&vpy=4&dur=942&hovh=225&hovw=225&tx=154&ty=85&sig=114980428662261257468&page=2&tbnh=118&tbnw=118&start=25&ndsp=33&ved=1t:429,r:4,s:25,i:128
Tags