Inverse Laplace Transform

3,165 views 28 slides Aug 14, 2021
Slide 1
Slide 1 of 28
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28

About This Presentation

A review of integral Transforms - Inverse Laplace Transformations and sample problems with solutions.


Slide Content

The Laplce Transforms - II
Review of Integral Transforms - Inverse Laplace Transforms
Vishnu V
Assistant professor, Department of Mathematics
Sree Ayyappa College, Eramallikkara
1 / 28

Definition of Inverse Laplace Transform
Inverse Laplace Transform
If the laplace transform of a functionF(t) isf(s), i.e., if
L(F(t)) =f(s), thenF(t) is called an inverse laplace transform
off(s) and we write aymbolicallyF(t) =L
−1
f(s).
In other words, inverse transform of a given functionf(s) is that
functionF(t) whose, Laplace transform isf(s).
2 / 28

Properties of Inverse Laplace Transforms
First property
L
−1
(kf(t)) =kL
−1
(f(t)), where k is a constant.
2
nd
property - Linearity property
Ifc1andc2are any two constants whilef1(s) &f2(s) are the
functions with Inverse Laplace transformsF1(t) &F2(t)
respectively, then
L
−1
(c1f1(s) +c2f2(s)) =c1L
−1
(f1(s)) +c2L
−1
(f2(s))
=c1F1(t) +c2F2(t)
3 / 28

Properties of Inverse Laplace Transforms
3
rd
property -Translation or Shifting property
IfL
−1
(f(s)) =F(t) thenL
−1
(f(s−a)) =e
at
F(t)
4
th
property - Multiplication by power of t
IfL
−1
(f(s)) =F(t), andF(0) =F

(0) =. . .F
(
n−1)(0) = 0
thenL
−1
Γ
d
n
ds
nf(s)

= (−1)
n
t
n
F(t), wheren= 1,2,3...
5
th
property
ifL
−1
(f(s)) =F(t), then
L(e
−as
f(s)) =



F(t−a),t>a
0, t<a− − − −(1)
4 / 28

Remark
It should be noted that the right side of (1) can be written in a
different way using the Unit step function.
Letua(t) =



1,t>a
0,t<a− − − − −(2)
From equations (1) and (2) we can wriiten in a different form
L
−1
(e
−as
f(s)) =F(t−a)ua(t)
.
5 / 28

Method of Convolution
Convolution Property
IfF(t) andG(t) are the inverse transforms off(s) andg(s),
respectively, the inverse transform of the productf(s)g(s) is the
convolution ofF(t) andG(t), written (F∗G)(t) and defined by
(F∗G)(t) =
Z
1
0
F(t−u)G(u)du
i.e.,
L
−1
(f(S)g(s)) = (F∗G)(t) =
Z
1
0
F(t−u)G(u)du
6 / 28

Method of Convolution
Corrollary
Puttingt−u=vin the above integral, we obtain,
(F∗G)(t) =−
Z
0
t
F(v)G(t−v)du
=
Z
t
0
G(t−v)F(v)du
= (G∗F)(t)
7 / 28

Remark
Properties of convolution
(F∗(G+H))(t) = (F∗G)(t) + (F∗H)(t)
((F∗G)∗H)(t) = (F∗(G∗H))(t)
(F∗0)(t) = (0∗F)(t)
8 / 28

Examples : - Partial Fractions
Use partial fractions to decompose :
s+3
(s−2)(s+1)
To the linear factorss−2 ands+ 1, we associate respectively the
fractions
A
(s−2)
and
B
(s+1)
. We set
s+ 3
(s−2)(s+ 1)
=
A
(s−2)
+
B
(s+ 1)
i.e.,s+ 3 =A(s+ 1) +B(s−2)
To find A and B, we substitutes=−1 ands= 2 into the above
equation,⇒A=
5
3
andB=
−2
3
.

s+ 3
(s−2)(s+ 1)
=
5
3
(s−2)

2
3
(s−2)
9 / 28

Examples :
Find theL
−1
n
s+3
(s−2)(s+1)
o
L
−1
æ
s+ 3
(s−2)(s+ 1)
œ
=
5
3
L
−1
æ
1
s−2
œ

2
3
L
−1
æ
1
s+ 1
œ
=
5
3
e
2x

2
3
e
−x
10 / 28

Example:
Find the inverse transforms of
1.
3s+7
s
2
−2s−3
2.
5s
2
−15s−11
(s+1)(s−2)
3
3.
3s+1
(s−1)(s
2
+1)
In the problems of the above kind, we use the method ofpartial
fractions.
1. Resolving into partial fractions, we have
3s+ 7
s
2
−2s−3
= 4.
1
s−3

1
s+ 1
.
∴L
−1
`
3s+ 7
s
2
−2s−3
´
= 4L
−1
`
1
s−3
´
−L
−1
`
1
s+ 1
´
= 4.e
3t
−e
−t
11 / 28

Examples
2. Resolving into partial fraction, we have,
5s
2
−15s−11
(s+ 1)(s−2)
3
=−
1
3
`
1
s+ 1
´
+
1
3
`
1
s−2
´
+
4
(s−2)
2

7
(s−2)
3
∴L
−1
`
5s
2
−15s−11
(s+ 1)(s−2)
3
´
=−
1
3
L
−1
`
1
s+ 1
´
+
1
3
L
−1
`
1
s−2
´
+
+ 4L
−1
`
1
(s−2)
2
´
−7L
−1
`
1
(s−2)
3
´
=−
1
3
e
−t
+
1
3
e
2t
+ 4te
2t

7
2
t
2
e
2t
.
12 / 28

Examples :
3. Resolving into partial fractions, we have,
3s+ 1
(s−1)(s
2
+ 1)
=
2
s−1
+
−2s+ 1
s
2
+ 1
∴L
−1
æ
3s+ 1
(s−1)(s
2
+ 1)
œ
= 2L
−1
æ
1
s−1
œ
−2L
−1
æ
s
s
2
+ 1
œ
+L
−1
æ
1
s
2
+ 1
œ
= 2e
t
−2 cost+ sint.
13 / 28

Examples :
Find the inverse tranforms of,
1.
6s−4
s
2
−4s+20
2.
s
(s−2)
4
3.
s
2
+2s+3
(s
2
+2s+2)(s
2
+2s+5)
1. Here the denominator cannot be factorised into rational factors
and hence the partial fraction method is in-applicable. However
completing the square in the denominator, we obtain,
6s−4
s
2
−4s+ 20
=
6(s−2) + 8
(s−2)
2
+ 16
= 6.
(s−2)
(s−2)
2
+ 16
+
8
(s−2)
2
+ 16
∴L
−1
æ
6s−4
s
2
−4s+ 20
œ
=L
−1
æ
s−2
(s−2)
2
+ 16
œ
+ 2L
−1
æ
4
(s−2)
2
+ 16
œ
= 6e
2t
cos 4t+ 2e
2t
sin 4t
14 / 28

Examples :
2. Since the denominator contains (s−2) as unit, rewrite the
numerator also in terms ofs−2. Thus
s
(s−2)
4
=
(s−2) + 2
(s−2)
4
=
1
(s−2)
3
+
2
(s−2)
4
∴L
−1
æ
s
(s−2)
4
œ
=L
−1
æ
1
(s−2)
3
œ
+ 2L
−1
æ
2
(s−2)
4
œ
=e
2t
.
t
2
2!
+ 2e
2t
.
t
3
3!
=
1
3!
e
2t
(3t
2
+ 2
3
).
15 / 28

Examples :
3. By the method of partial frations
s
2
+ 2s+ 3
(s
2
+ 2s+ 2)(s
2
+ 2s+ 5)
=
1
3
1
s
2
+ 2s+ 2
+
2
3
1
s
2
+ 2s+ 5
=
1
3
1
(s+ 1)
2
+ 1
+
2
3
1
(s+ 1)
2
+ 4
∴L
−1
æ
s
2
+ 2s+ 3
(s
2
+ 2s+ 2)(s
2
+ 2s+ 5)
œ
=
1
3
L
−1
æ
1
(s+ 1)
2
+ 1
œ
+
1
3
L
−1
æ
1
(s+ 1)
2
+ 4
œ
=
1
3
e
−t
sint+
1
3
e
−t
sin 2t
=
1
3
e
−t
(sint+sin2t)
16 / 28

Examples :
Find the inverse Laplace transfroms of
1.
1
(s+a)
n
2.
1
(s
2
+a
2
)
2
3.
s
2
(s
2
+a
2
)
2
1. By applying 3
rd
property -Translation or Shifting property, we
have
L
−1
æ
1
(s+a)
n
œ
=e
−at
L
−1
æ
1
s
n
œ
=e
−at
t
n−1
(n−1)!
2. Since we know the inverse transforms of
1
s
2
+a
2and
s
2
−a
2
(s
2
+a
2
)
2, we
shall rewrite the given expression in terms of these.Thus :
17 / 28

Examples :
1
(s
2
+a
2
)
2
=
1
2a
2
(s
2
+a
2
)−(s
2
−a
2
)
(s
2
+a
2
)
2
=
1
2a
2
æ
1
s
2
+a
2

s
2
−a
2
(s
2
+a
2
)
2
œ
∴L
−1
æ
1
(s
2
+a
2
)
2
œ
=
1
2a
2
`
1
a
sinat−tcosat
´
=
1
2a
3
[sinat−atcosat]
18 / 28

Examples :
3.
s
3
(s
2
+a
2
)
2
=
s[(s
2
+a
2
)−a
2
(s
2
+a
2
)
2
=
s
s
2
+a
2
−a
2
s
(s
2
+a
2
)
2
∴L
−1
æ
s
3
(s
2
+a
2
)
2
œ
= cosat−a
2
.
1
2a
tsinat
= cosat−
1
2
atsinat.
19 / 28

Examples :
FindL
−1
n
e
−3s
(s−1)
4
o
We have
L
−1
æ
e
−3s
(s−1)
4
œ
=e
t
L
−1
æ
1
s
4
œ
=e
t
t
3
3!
; 3
rd
property -Translation or Shifting property
=
1
6
t
3
e
t
L
−1
æ
e
−3s
(s−1)
4
œ
=



1
6
(t−3)
3
e
t−3
;t>3.Using 6
th
property
0; t<3
Using the remark;
=
1
6
(t−3)
3
e
t−3
u3(t);
20 / 28

Examples :
FindL
−1
n
e
πs
s
2
+2s+2
o
We have
L
−1
æ
e
πs
s
2
+ 2s+ 2
œ
=L
−1
æ
1
(s+ 1)
2
+ 1
œ
=e
−t
L
−1
æ
1
s
2
+ 1
œ
=e
−t
sint.Hence using property 6, we have
L
−1
æ
e
πs
s
2
+ 2s+ 2
œ
=



e
−t−π
sin(t−π);t> π.
0;t≤π
21 / 28

Remark
Remark
We known that
L{tF(t)}=−
d
ds
L{F(t)}
∴tF(t) =L
−1
æ

d
ds
L{F(t)}
œ
22 / 28

Examples :
Find the inverse transforms of the log
s+1
s−1
Solution: LetF(t) =L
−1
n
log
s+1
s−1
o
, ThenL[F(t)] = log
s+1
s−1
Hence from above remark,
tL
−1
æ
log
`
s+ 1
s−1
´œ
=L
−1
æ

d
ds
[log(s+ 1)−log(s−1)]
œ
=−L
−1
æ
d
ds
log(s+ 1)
œ
+L
−1
æ
d
ds
log(s−1)
œ
=−L
−1
æ
1
s+ 1
œ
+L
−1
æ
1
s−1
œ
=−e
−t
+e
t
= 2 sinht
∴L
−1
æ
log
`
s+ 1
s−1
´œ
=
2 sinht
t
23 / 28

Examples :
Find the inverse Laplace transforms of tan
−1
(
2
s
2)
Solution: LetF(t) =L
−1
Φ
tan
−12
s
2

, ThenL[F(t)] = tan
−12
s
2
Hence from above remark,
tL
−1
æ
tan
−1
(
2
s
2
)
œ
=L
−1
æ

d
ds
[tan
−1
(
2
s
2
)
œ
=L
−1
æ
4s
s
2
+ 4
œ
=L
−1
æ
4s
(s
2
+ 2)
2
−4s
2
œ
=L
−1
æ
4s
(s
2
+ 2 + 2s)(s
2
+ 2−2s)
œ
=L
−1
æ
1
s
2
−2s+ 2

1
s
2
+ 2s+ 2
œ
=L
−1
æ
1
(s−1)
2
+ 1

1
(s+ 1)
2
+ 1
œ
24 / 28

Examples :
=e
t
sint−e
−t
sint
= 2 sinhtsint.
∴L
−1
æ
tan
−1
(
2
s
2
)
œ
=
2 sinhtsint
t
Using Convolution property, FindL
−1
n
1
s(s
2
+a
2
)
o
Solution: We have already solved this type of problems by partial
fraction method. However convolution method the work easy.
Letf(s) =
1
s
andg(s) =
1
s
2
+a
2
ThenF(t) =L
−1
Φ
1
s

= 1 andG(t) =L
−1
n
1
s
2
+a
2
o
=
1
a
sinat.
25 / 28

Examples :
∴L

æ
1
s(s
2
+a
2
)
œ
=
Z
t
0
F(t−u)G(u)du
=
Z
t
0
sinau
a
du
=
ˇ
−cosau
a
2
˘
t
0
=
1
a
2
(1−cosat)
Using Convolution property, FindL
−1
n
1
s
2
(s−a)
o
Solution: Letf(s) =
1
s
2andg(s) =
1
s−a
ThenF(t) =L
−1
Φ
1
s
2

=tandG(t) =L
−1
n
1
s−a
o
=e
at
26 / 28

Examples :
∴L
−1
æ
1
s
2
(s−a)
œ
=
Z
t
0
F(u)G(t−u)du
=
Z
t
0
ue
a(t−u)
du
=e
at
Z
t
0
ue
−au
du
=
1
a
2
(e
at
−at−1)
27 / 28

Thank You
28 / 28