Investigation of thermal-induced decomposition of iodoform

RubemFranciscoSilvaB 35 views 18 slides Jun 28, 2024
Slide 1
Slide 1 of 18
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18

About This Presentation

The objective of the article is to investigate the thermal-induced decomposition of iodoform under non-isothermal conditions in a dynamic oxidative atmosphere, aiming to understand the compound's behavior under these conditions and contribute to the knowledge of its thermal stability.


Slide Content

[email protected]
Universidade Regional do Cariri - URCA
Departamento de Química Biológica
Curso de Graduação em Química
Investigation of thermal-induced decomposition of iodoform
J Therm Anal Calorim - DOI 10.1007/s10973-016-5368-z

Ionut¸ Ledet¸i1 • Marius Murariu2 • Gabriela Vlase3 • Titus Vlase3 • Nicolae Doca3 • Adriana Ledet¸i1 •
Lenut¸a-Maria S¸ uta1 • Tudor Olariu1
Rubem Francisco Silva Bezerra
Crato - CE
2024

[email protected] 02
●Historical Significance of Iodoform
●Chemical Properties of Iodoform
●Medical and Industrial Applications
●Research Gaps in Iodoform Studies
Introduction

[email protected] 03
The objective of the article is to investigate the thermal-induced
decomposition of iodoform under non-isothermal conditions in a dynamic
oxidative atmosphere, aiming to understand the compound's behavior
under these conditions and contribute to the knowledge of its thermal
stability.
Objective

[email protected] 04
●Preparation and purification of iodoform as described in the literature
●Determination of the melting point of iodoform
Bo¨etius PHMK (Veb Analytik Dresden)
●Fourier transform infrared spectroscopy (FT-IR)
Bruker Vertex 70 FT-IR
●Thermogravimetry (TG), derivative thermogravimetric analysis (DTG),
and differential thermal analysis (DTA) measurements
Perkin-Elmer DIAMOND TG/DTA
Materials and methods
Ti = ambient temperature
Tf = 550 ºC
Rate = 10 ºC min-1
ẞ = 5, 7, 10, 12 and 15 C min⁻¹


TG/DTG/DTA

[email protected] 05
Synthesis of iodoform
Iodine 3g
Acetone 3mL
Agitation
NaOH 5%
Disproportion
Filtration
Dried for 2h at 35 ºC


Product
Hot ethanol
Cooling at room temperature
Filtration
Dried for 24h at 35 °C

[email protected] 06
Iodoform mechanism

[email protected] 07
ATR-FTIR

[email protected] 8
TG/DTG/DTA

[email protected] 9
Plottings of the selected isoconversional methods used in the kinetic study

[email protected] 10
Plottings of the selected isoconversional methods used in the kinetic study

[email protected] 11
The Ea values obtained by isoconversional methods for IDF

[email protected] 12
Ea versus a variation by the employment of isoconversional methods

[email protected] 13
In all cases, good linear correlations were
obtained, with determination coefficients higher
than 0.984. The estimation of Ea values was
realized from the slopes of those lines, for 0.05 B
a B 0.95, with a variation step for a of 0.05.

[email protected] 14
Conclusions
All the results obtained by the employment of isoconversional methods
are in good agreement; the mean apparent activation energy was around 330
kJ mol-1 by all three methods. However, since variation larger than 10 % of Ea
versus a was noticed, the NPK method was employed, and the separation of
physical versus chemical transformations of the sample was possible. NPK
method suggested that the degradation of iodoform occurs in two parallel
processes, the main step being a chemical degradation (n = 1/3), while the
parallel process is a physical–chemical one (n = 3/5; m = 1/3).

[email protected] 15
Any question?

[email protected] 16
References
1. Hill B. On the therapeutic use of iodoform. Brit Med J. 1878;1:127.
2. Freedman M, Stassen LFA. Commonly used topical oral wound dressing materials in dental and surgical practice–a literature review. J Irish Dent
Assoc. 2013;59(4):190–5.
3. Lyday PA. Iodine and iodine compounds, Ullmann’s Encyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH; 2005.
4. Lin BC, Zhao YM, Yang J, Wang WJ, Ge LH. Effects of zinc oxide-eugenol and calcium hydroxide/iodoform on delaying root resorption in primary
molars without successors. Dent Mater J. 2014;33(4):471–5.
5. Kuga MC, Faria G, So´ MV, Keine KC, dos Santos AD, Duarte MAH, Kopper PMP. The impact of the addition of iodoform on the physicochemical
properties of an epoxy-based endodontic sealer. J Appl Oral Sci. 2014;22(2):125–30.
6. Ashraf N, Capper R. Should we still be using bismuth iodoform paraffin paste-impregnated gauze as an ear canal dressing following ear surgery? Clin
Otolaryngol. 2013;38(4):357–60. 7. Ladak A, Agrawal S. Bismuth iodoform paraffin paste: a review. J Laryngol Otol. 2013;127(5):531–41.
8. Petel R, Moskovitz M, Tickotsky N, Halabi A, Goldstein J, Houri-Haddad Y. Cytotoxicity and proliferative effects of Iodoform-containing root
canal-filling material on RAW 264.7 macrophage and RKO epithelial cell lines. Arch Oral Biol. 2013;58(1):75–81.
9. Abraham A, Zhang SS, Aly Y, Schoenitz M, Dreizin EL. Aluminum-iodoform composite reactive material. Adv Eng Mater. 2014;16(7):909–17.
10. Gu JM, Yan XH, Fu ZF, Yang WT, Shi Y. Iodoform-mediated free radical emulsion polymerization of chloroprene. J Appl Polym Sci.
2013;128(4):2291–6.
11. Bertolotti F, Gervasio G. Crystal structure of iodoform at 106 K and of the adduct CHI3 center dot 3(C9H7N). Iodoform as a building block of
co-crystals. J Mol Struct. 2013;1036:305–10.
12. Bielinski DM, Slusarski L, Glab P. Modification of rubber by iodoform. J Appl Polym Sci. 2007;105(1):177–89.
13. Fulias A, Popoiu C, Vlase G, Vlase T, Onetiu D, Savoiu G, Simu G, Patrutescu C, Ilia G, Ledeti I. Thermoanalytical and spectroscopic study on
methotrexate—active substance and tablet. Dig J Nanomater Bios. 2014;9:93–8.
14. Ledeti I, Vlase G, Vlase T, Fulias A. Kinetic analysis of solidstate degradation of pure pravastatin versus pharmaceutical formulation. J Therm Anal
Calorim. 2015;121(3):1103–10.
15. Anghel M, Vlase G, Bilanin M, Vlase T, Albu P, Fulias A, Tolan I, Doca N. Comparative study on the thermal behavior of two similar triterpenes from
birch. J Therm Anal Calorim. 2013;113(3):1379–85.

[email protected] 17
References
16. Fulias A, Vlase G, Grigorie C, Ledeti I, Albu P, Bilanin M, Vlase T. Thermal behaviour studies of procaine and benzocaine: Part 1. Kinetic analysis of
the active substances under non-isothermal conditions. J Therm Anal Calorim. 2013;113(1):265–71.
17. Ledeti I, Fulias A, Vlase G, Vlase T, Bercean V, Doca N. Thermal behaviour and kinetic study of some triazoles as potential anti-inflammatory
agents. J Therm Anal Calorim. 2013;114:1295–305.
18. Fulias A, Ledeti I, Vlase G, Vlase T. Physico-chemical solid-state characterization of pharmaceutical pyrazolones: an unexpected thermal behaviour.
J Pharm Biomed. 2013;81–82:44–9.
19. Ivan C, Suta LM, Olariu T, Ledeti I, Vlase G, Vlase T, Olariu S, Matusz P, Fulias A. Preliminary kinetic study for heterogenous degradation of
cholesterol-containing human biliary stones. Rev Chim Bucharest. 2015;66(8):1253–5.
20. Pupca G, Bucuras V, Vlase G, Vlase T, Fulias A, Ledeti I. Solidstate analysis of some urinary calculi. Rev Chim Bucharest. 2014;65(9):1058–62.
21. Ivan C, Ledeti I, Vlase G, Vlase T, Fulias A, Olariu S. Study of solid-state behaviour of some human gallstones. Rev Chim Bucharest.
2015;65(2):265–70. 22. Fuson RC, Tullock CW. The Haloform Reaction. XIV. An improved iodoform test. J Am Chem Soc. 1934;56(7):1638–40.
23. Rybinski P, Janowska G, Antkowicz W, Krauze S. Thermal stability and flammability of butadiene-acrylonitrile rubber crosslinked with iodoform. J
Therm Anal Calorim. 2005;81(1):9–13. 24. Janowska G, Kucharska A. The influence of the method of butadiene rubbers cross-linking on their thermal
properties. J Therm Anal Calorim. 2009;96(2):561–5.
25. Rybinski P, Janowska G. Effect of the spatial network structure and cross-link density of diene rubbers on their thermal stability and fire hazard. J
Therm Anal Calorim. 2014;117(1):377–86.
26. Rybinski P, Kucharska-Jastrzaek A, Janowska G. Thermal properties of diene elastomers. Polym Sci Ser B. 2014;56(4):477–86.
27. Chakrabartty SK. Alkaline hypohalite oxidations. In: Trahanovsky WH, editor. Oxidation in organic chemistry. New York: Academic Press; 1978. pp.
343–70.
28. Friedman HL. Kinetics of thermal degradation of char-foaming plastics from thermogravimetry: application to a phenolic resin. J Polym Sci.
1965;6C:183–95.
29. Ozawa T. A new method of analyzing thermogravimetric data. Bull Chem Soc Jpn. 1965;38:1881–6.
30. Flynn JH, Wall LA. A quick, direct method for the determination of activation energy from thermogravimetric data. Polym Lett. 1966;4:323–8.
31. Kissinger HE. Reaction kinetics in differential thermal analysis. Anal Chem. 1957;29(11):1702–6.
32. Akahira T, Sunose T. Joint convention of four electrical institutes. Research Report Chiba Institute of Technology. Sci Technol. 1971;16:22–31.
temperatures. Thermochim Acta. 1971;3:1–12.

[email protected] 18
References
33. Serra R, Nomen R, Sempere J. The non-parametric kinetics. A new method for the kinetic study of thermoanalytical data. J Therm Anal Calorim.
1998;52:933–43.
34. Serra R, Sempere J, Nomen R. A new method for the kinetic study of thermoanalytical data: the non-parametric kinetics method. Thermochim Acta.
1998;316:37–45.
35. Vlase T, Vlase G, Doca N, Bolcu C. Processing of non-isothermal TG data. Comparative kinetic analysis with NPK method. J Therm Anal Calorim.
2005;80:59–64.
36. Vlase T, Vlase G, Doca N, Ilia G, Fulias A. Coupled thermogravimetric-IR techniques and kinetic analysis by non-isothermal decomposition of Cd2?
and Co2? vinyl-phosphonates. J Therm Anal Calorim. 2009;97:467–72.
37. Bodescu AM, Sirghie C, Vlase T, Doca N. Comparative kinetics studies of thermal decomposition of kalium, respectively natrium
oxalato-oxo-diperoxo molibdate. J Therm Anal Calorim. 2013;113(3):1431–5.
38. Sˇestak J, Berggren G. Study of the kinetics of the mechanism of solid-state reactions at increasing temperatures. Thermochim Acta. 1971;3:1–12.
Tags