Ionic eq-invert.pdf,notes.chemistry from pw

SatendraMaurya8 33 views 21 slides Jul 06, 2024
Slide 1
Slide 1 of 21
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21

About This Presentation

👍👍👍👍


Slide Content

FormulasheetofIONICEQUILIBRIUM
BY
:SUHANSHUSIR
#Acid-Base
Theory
①Arrhenius
H
A
H20120

Theory[
-Hot
->H502-H70z


Acid=gives
Hoinwater3
Man
+1
On
-
Base=
gives
On
inwater

O
-1
-
O 300
H503

20-
neutral

Han-10
AllArrhenius
acids
②Bronsted-lowny
Theory
areBronsted
Acids
Acid=
gives
notinsolution
(Proton
doncs
Y
-
Base=
accept
10insolution(Protonaccepter)
Acid
-+
Conjugate
Base
/
Base+10-conjugate
Acid
C
.B)
(A)
C

->All
strong
acidshaveweak
Conjugate
Base
Y
samefor
All
weakacids
have
strongconjugate
Base
Bases
.
=>20-Amphoteric
innature
↑20
+120-
↑30
+ok
Auto-protolysis
or
self
Ionisation
n 3of
water
.
C-B
Acid
Bas
-
#Lewis
theory
Lewis
Bases=eOdmor
-
L
wisAcids
=eOacceptor
"¥must
havecomplete

musthavein complete
Octet
Octetwithlonepair
.
and
vacant
orbitals.
->AllBranstedBasesOreLewis
Bases.
=>Base-Bitterintaste
Acids
--
=
sour
intaste

changes
BluelitmustoRed

Changes
RedlitmustoRed

#
wald
dilutionlaw-validfor
weak
electrolytes
.

degreeof
dissociation
C
concentration
x)
-ABA+BE
it<25%or0
.05
,Keg
=222T
C O O
C
-CL CX CX
c=

V
M
Ke
=
2YI
N
=
-
=>Temp
.
4&4 ConcentrationI
[=>for
strongelectrolytes<=100%%orI
degree
of
dissociation↑
=>
S
traction
=Y
=>itdielectricconstant
of
solventincreases
,
&4

#pHCalculation
-
P=
-logX
I
cutx=aIQ
oa
pt
=
10gTH
+
]
po
=
-log[OO]
pka
=
-
1099
Case
-I-
strong
acids
Monoproticacid(A)
->TH
=TACIA)
Kb
P
=
=
10gKb Diproticacid
[2A)
-
THE
=2TACIDY
pkw-
-
log
Kw
·
Triproticacid
(HA)
-TH
+
]=
3 TACID]
In
general
pt=
-
logTHt)
-
T
case-
I
-
p4
+
po=14->
Strong
Bases->findpothenpl
.
MonoacidicBase
(BOH)
-TOMO)=
<BAS]
Diacidic
Base(B20H)-[OHO)=
2 TBase]
po=
-log(OH)-
then
ph
=14-pot

Case II
Water(120) Kw=[H]TOO]

Molarityofpure
water
=55
.
55M "¥ejonic
product
of
wate
-
--
Pre/neutral
wate=>TH]
=[0O]
P
kw
=
pH
+pOt
Acidicwater=>[H]TONG)
Basic
water
=>[H
+
]</OO]
aroomtempkw=10Y
-
- pkw=14
forPurewater
,(H)
=TOMO]
10+Y=Th
+
]TOMO]
KW
=THETOMOJ 2
14=
pH
+pot
[
+
]=[00]
=Vkw For
neutralwater
-
atroomtemp
pscale
=0to14
(n
+
]=TO]
=
W
=107
--
acidic
-
-Basic p
=
pOH=7
O H
14
(neutral)
Pscale
=0topkw
=0to14

=>asTempincreases
,
Kw↑
at98c
kw=1042
,
pkw
=12
PKW (H
+
]=100]=10-6M
P"
of
neutralwaterI Ph
of
neutralwater=6
pHscale
range
↓ prscale
range
=0to12↓
-
acidia
-
->Basic
Case-IV
effectof
dilution
onpH
!
1
--
8
L
&
12
Dilution/concentration
:M,
V
,
=
M2V2 (neutral)
-
M4V ↓
,
Y
ondilutionincreas
,pH
increases
.
Y
Conc4PHX,
M LV4
ondilutiondecrease
,pl
decream
Case
itHEorTONG]fromacid/Base>10
%
m
,
we
neglectno/onO⑨
fromH20.
⑬it[H]
orTON)fromauid/Basearein
blu10-M
to10-5M
,then
weconsider[H
+
/TOMO]
fromH20
.

it
I/TONG)
fromGuid/Base
<10-9M
,
then
pH/PO
=-

it 0n0
>IM
,
thenowillbe
negative
Laveto
waters

/po
scale
willnotbevalidfor
concentrane
solution.
Case -


Mixture
oftwo
strong
acids
Th]mix
=
NMVzI then
P mix
=
-109THH)
mie
②Mixtureoftwo
strong
bases
10 mix=
Uz]
thenpormixE-log[OnSmi
e
p"mix=14
-
poix
-


mixture
ofstrong
audand
strong
Bases.
it
(g)avia
=
(e)
Base
,
thenph
=7(neutral)
it
(neg)acid<(C)Bar
,
thenTh]
mix
=AVA-VB
VA+
VB
↑mix=
-logTmix
it(e)
Acid
<
(neg)
Base
,
then[00mix
= -NAVA
VA+
VB
por
mix=
-log[0mix

=14
-
Po

#WeakAcid(HA) WeakBase(BOH)
HA
=
10+AO BOM
-BO+ON
t
=0C
O
O t
=0C O O
-
t
=
em
C
-LxCd(X t=
equ
C
-2X CL
Ca
a
=
d
kb
=
applying
Ostwalddilution
law
,
applying
ostward
dilution
law
,
ka
=
22
kb
=C2
Kax=v
v
=
X
=K
=
[H
+
]=C=
X
[00]
= =Vx[
ph=
z(p(
-
log2)
pol=
z(pkb
-
logC)

WeakAcids WeakBases
--
Cacidicstrength&ThL
oraBasic
strength
<
100
Cavidicstrength)
,
Basicstrength),
--
(acidicstrength)=strengths
it 2
,it
Lacidicstrength,
=
=
(Basicstrength)
I
=a
=
--
--
Lavidic
strength)
2
92Basic
strength/a
&
2 Kb2
weak
aids
aremixed,t
weakbasesaremixed
,
Int]mix
=
,X+192x2
+
-
...
-[0]mix
=
4+1 b2x(+-. .
pmix
=
-log/
+
]mix Po=
-10g
08T
mix

aud-C
.B
(a)
avid(b)
c
.
B
=Kw
oddion
effect
-

or
degreeof
pla+pl=pkw dissociation
increase
.
acid
C-B
Base-c
.A
(a)
.
x(b)
Base
=KwCommon
inn
effect

/degreeof
dissociation
Da
A
+
pl
.B
=pkw
decreases
Wiw
.B
only
-
d=
ca&E
Ka
e
conc"
of
conc
no/onE
tom
Weakaid
B
in
presence
of
S
.
A/S
.B=Commonin
effect
.
Strong
acid

#
Buffersolution:
-resistthe
change
in
ph
.
-

pt
ofBuffersolutiondoesnotdepend
onthewome
of

solution
.
F Mixed
Buffen-Acidic
BufferWaitsCoB
Simple
Buffer I
W.
A+its
saltwith
says
(W
.
A+w
-
B) L
S
:B

phplalogaWats
mo
Jona
Buffer
=capacity Basi
Buffer (xy)

W
.
B+itsC
.A
PO
=P
Maximum
bufferCapacity
~
B+its
saltwithSoA
3

log
[sautsres
for
W
.B+S.A
LasAcidic
=>p=pla
Ima(2
>y)
Buffer
&mol
(b)Basic
Buffer
Po
=pkb

=>
Higher
the
BufferCapacity,
more
resistantisthesolution
AcidicBuffer BasicBuffer
to
plcharge
.
pk=pl+
logsall
po=p1+
10g[alCA
itamoves
of
S
.
Aisadded itamolesof5.Ais
added
pl
=
p(+
log(
.
B
-x] On
=pkb
+
10g(A
+
]
TACID+U
[Base-]
it
y
moves
of
S
-
1isadded it
f
molesof
S
.Bisadded,
pH
=pl
+
10gB
e
por
=po+
10g-
Max
.
Buffer
Capacity
,p
=pa
Max.
BufferCapacity
,po
=pKb
-[

&
whensall whensalss
=1

BufferRange
-
·
BufferAcidicE
N
phpka ↑
n
=p(+1
-
p
=
pk
-1 "¥
-
(max
.buffercapacity ↓
When
Isalt)
#1
[Acid]
10 over
a
as
10
Buffer
A

po
=#b Pop
-1
#[

ohn
sales
=
t
max
.buffercapacity
when 10
(Base]

#SaltHydrolysis
Acid
+Base
-
Salt
+
120
-
=>weakerpartof ↓
AnAidCation
Salt
undergoesHydrolysis
fromBase
W-A+SoB
salts
of-noweaker
part
salts
of-

no
Hydrolysis

AntoniaPart
Weake

pt==

an"¥
no Loo
·
nicHydrolysis
effect
onlitmus
H
>7
Salt
of
B-Cationicpart
weeken
10+
H20-
HA+on

Cationic
Hydrolysis
Salts
ofE
L

W.A+
W
.B
pt<7

bothcations
&anions
tomsbluelitmustoRed undergoHydrolysis
B+
H-
BOM+H
+B+
H20*
HA+BOH

h=degreeofhydrolysis
,Ku=
Hydrolysis
constant
Salt
of
(SA
+
WoB) Salt
of
W
.A+SoB
B

+
H20
-
>BOH
+1 A
+Hyp
-
#A
+010
&
O
C O
D
C
O
c
-ch
Ch Ch c
-ch
Ch
ch
2
kn
=
-
kn
=
n
=
Kw
Ka
=
1
-n K
b
Applying
Ostwalddilution
law
,
Applying
Ostwalddilutionlaw
kn
=
Ch2
kn
=Ch
n=
va=ICh=
+=
=
r
-
- ION0]
=Ch=VEXC=
(n
+
1=Ch=xnx
=
T pon==
-
1
(pk4
+
10gC)
pt
==
-
z
(pkb+
10g)) ph
=
z+
z(p
**
+
109C)

#
Saltf
(
.A+w
.
B)
->
nodependence
on
concentration
-
0+B+
H20
-HA+BOH
C
C
&
D OTrick
to
identity
c
-chc
-ch
Ch Ch
o25
Kale
or
/pla
atvalueot
part
kn
=
h
=
Xb
Weak
Applying
Ostwolddilutionlaw
,
kn
="¥2
P
"
=7+
zz(pk
-p(b)
-
n
=
+I
T
+
]=

#
Solubility
Product
(SP)
-
defined
forraingly
solublesalt

product
of
molar
concentration
of
ions
(solubility
<0
.01
M)
raisedtotheirstoichiometric
officients
at
equilibrium
.
-
-
AB(s)
-
A+Bo
AuBy
=A
+
7
+
y
B
>p
=S2
S S
S
S
ksp
=(xs)(ys)y
=>solubilityalways
in
moles/litres
.
Ionic
Product(I.P)

-
definedonly
at
equin
ledefined
at
any
momentof
reaction

valueconstantduring

value "¥
theXM
"¥ changesduring
theExt.
depends
only
ontemp.
dependsonconch
,Temp,
Pressure,
volume

I
.P=
Sp
=atequilibrium/saturated
solution
I
.
PS
=
>Unsaturatedsolution
&P>
=>Precipitate
willbeformed
.
For
numericals=>Precipitation
willstartfrom1oP
is
justgreate
than
"¥So
,
IP=P
P
.
I
=>when
equal
vot.
of
differentsaltsaremided
,
[cation]mix=
initial[Anion mi
=#initial
2
2
=>
Common
for
effect
inSolubility
Product
=
>solubility
dureaus
in
presenceofStrongSalt
.
anc"
of
communion
fromstrongexectorate

#
SimultaneousEquilibrium
Bothweekelectrolytes
attainequilibrium
insamevessel
andhaveonecommonion.
AB(-
A+Bo
3(SP)Ar
=(
+
su)
s
S2
+S
,
Si
Ac
-A
+c
Y
(SP)
Ac
=(51
+
S2)
Su
s
,
+
52)
S2
C
->it
kspof
bothareof
nearvalues
,
thenS
,
and52
areconsidered
and
solved
.
-it
kpof
oneis
veryhigh,
then
solubilityof
othersalisneglected
andsolved.

#
Indicators
-is
a
dya/substance
which
changes
colourover
ashort
range
"¥is
Phenophthalain
:weakad(PhH)
"¥s
colourlessinavidsolutionandpink
inbasicsolution
.
phH
-
>ph8+HE
colorlessPink
inBase
ph
=
pin
+
loge
(ii)M
Orange
:WeakBase(MEOH)

pinkin
strong
acidicsolution
and
yellow
inBasicsolution
E
MeOl-Me
+On
T
yellowin
Pink/Red
in
Base acid
Tags