IR Interpretation

5,791 views 86 slides May 22, 2020
Slide 1
Slide 1 of 86
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30
Slide 31
31
Slide 32
32
Slide 33
33
Slide 34
34
Slide 35
35
Slide 36
36
Slide 37
37
Slide 38
38
Slide 39
39
Slide 40
40
Slide 41
41
Slide 42
42
Slide 43
43
Slide 44
44
Slide 45
45
Slide 46
46
Slide 47
47
Slide 48
48
Slide 49
49
Slide 50
50
Slide 51
51
Slide 52
52
Slide 53
53
Slide 54
54
Slide 55
55
Slide 56
56
Slide 57
57
Slide 58
58
Slide 59
59
Slide 60
60
Slide 61
61
Slide 62
62
Slide 63
63
Slide 64
64
Slide 65
65
Slide 66
66
Slide 67
67
Slide 68
68
Slide 69
69
Slide 70
70
Slide 71
71
Slide 72
72
Slide 73
73
Slide 74
74
Slide 75
75
Slide 76
76
Slide 77
77
Slide 78
78
Slide 79
79
Slide 80
80
Slide 81
81
Slide 82
82
Slide 83
83
Slide 84
84
Slide 85
85
Slide 86
86

About This Presentation

IR Interpretation


Slide Content

Infrared Spectroscopy
Interpretation
5/22/2020 1
Prepared By :
Mahendra G S
M-Pharm,Pharmaceutical
Chemistry
JSSCP, MYSURU

Interferogram
Theinterferogramattheright
displaystheinterferencepattern
andcontainsallofthespectrum
information.
5/22/2020 2
AFouriertransformconvertsthe
timedomaintothefrequency
domainwithabsorptionasafunction
offrequency.

Identificationoffunctionalgroupsona
molecule–thisisaveryimportanttoolin
organicchemistry
Spectralmatchingcanbedonebycomputer
softwareandlibraryspectra
SinceabsorbancefollowsBeer’sLaw,cando
quantitativeanalysis
5/22/2020 3
Use of IR spectra

•AnIRspectrumisaplotofpercent
transmittance(orabsorbance) against
wavenumber(frequencyorwavelength).A
typicalinfraredspectrumisshownbelow.
5/22/2020 4
•A100percenttransmittanceinthespectrumimpliesno
absorptionofIRradiation.WhenacompoundabsorbsIR
radiation,theintensityoftransmittedradiation
decreases.Thisresultsinadecreaseofpercent
transmittanceandhenceadipinthespectrum.Thedipis
oftencalledanabsorptionpeakorabsorptionband.
FEATURES OF AN IR SPECTRUM
•Differenttypesofgroupsofatoms(C-H,O-H,N-H,
etc…)absorbinfraredradiationatdifferent
characteristicwavenumbers.

•No two molecules will give exactly the same
IR spectrum (except enantiomers)
•Simple stretching: 1600-3500 cm
-1
•Complex vibrations: 400-1400 cm
-1
, called the
“fingerprint region”
5/22/2020 5
Baseline
Absorbance/
Peak
IR Spectrum

Infrared Spectrum of Propanal (CH
3CH
2CHO)4600 3800 3000 2200 1800 1400
0
10
20
30
40
50
60
70
80
90
100
1000 800 600 400
C=O
P
e
r
c
e
n
t
t
r
a
n
s
m
it
t
a
n
c
e
Wavenumber(cm)
-1
5/22/2020 6

Describing IR Absorptions
IR absorptions are described by their frequency
and appearance.
•Frequency(n) is given in wavenumbers (cm
-1
)
•Appearanceis qualitative: intensity and shape
•conventional abbreviations:
vs very strong
s strong
m medium
w weak
br broad
sh sharp OR shoulder
5/22/2020 7

Ingeneral,theIRspectrumcanbesplitinto
fourregionsforinterpretation:
40002500cm
-1
:Absorptionofsinglebonds
formedbyhydrogenandotherelements
e.g.OH,NH,CH
25002000cm
-1
:Absorptionoftriplebonds
e.g.C≡C,C≡N
20001500cm
-1
:Absorptionofdoublebonds
e.g.C=C,C=O
1500400cm
-1
:Thisregionoftenconsistsof
manydifferent,complicatedbands.Thispartofthe
spectrumisuniquetoeachcompoundandisoften
calledthefingerprintregion.Itisrarelyusedfor
identificationofparticularfunctionalgroups.
5/22/2020 8

Summary of IR Absorptions
5/22/2020 9

BASE VALUES
(+/-10 cm
-1
)
Theseare
theminimum
numberof
valuesto
memorize.
O-H 3600
N-H 3400
C-H 3000
C N 2250
C C 2150
C=O 1715
C=C 1650
C O ~1100
large range
5/22/2020 10

O-H STRETCH
5/22/2020 11

Typical Infrared Absorption
Regions
O-H
2.5 4 5 5.56.1 6.5 15.4
4000 2500 2000 180016501550 650
FREQUENCY (cm
-1
)
WAVELENGTH (mm)
O-HC-H
N-H
C=OC=N
Very
few
bands
C=C
C-Cl
C-O
C-N
C-CX=C=Y
(C,O,N,S)
C N
C C
N=O N=O*
5/22/2020 12

•O-H 3600 cm
-1
(alcohol, free)
•O-H 3300cm
-1
(alcohols&acids,H-bonding)
5/22/2020 13
3600 3300
H-BONDEDFREE
broadens
shifts
The O-H stretching region

O
H
R
O
H
R
RO
H
R
OH
H
RO
R H
O HYDROGEN-BONDED HYDROXYL
ManykindsofOH
bondsofdifferent
lengthsandstrengths
Thisleadstoabroad
absorption.
Longer bonds are
weaker and lead to
lower frequency.
Hydrogen bonding occurs in concentrated solutions
( for instance, undiluted alcohol ).
“Neat” solution.
5/22/2020 14

“FREE” HYDROXYLRO
H
CCl4
CCl4
CCl4
CCl4
CCl4
Distinctbondhasawell-
definedlengthandstrength.
Occurs in dilute solutions of alcohol in an “inert” solvent like CCl
4.
Solvent molecules
surround but do not
hydrogen bond.
The “free” hydroxyl vibrates without interference from any other
molecule.
5/22/2020 15

Cyclohexanol
5/22/2020 16OH
O-H
H-bond
C-H
C-O
CH
2
ALCOHOL
neat solution
,

Butanoic Acid
5/22/2020 17CH
3
CH
2
CH
2
COH
O
O-H
H-bond
C-H C=O
CH
2
C-O
CARBOXYLIC ACID
neat solution

C
O
OH
R
C
O
OH
R CARBOXYLIC ACID DIMER
Strong hydrogen bonding in the dimer weakens the OH
bond and leads to a broad peak at lower frequency.
5/22/2020 18

N-H STRETCH
5/22/2020 19

Typical Infrared Absorption Regions
N-H
2.5 4 5 5.56.1 6.5 15.4
4000 2500 2000 180016501550 650
FREQUENCY (cm
-1
)
WAVELENGTH (mm)
O-HC-H
N-H
C=OC=N
Very
few
bands
C=C
C-Cl
C-O
C-N
C-CX=C=Y
(C,O,N,S)
C N
C C
N=O N=O*
5/22/2020 20

The N-H stretching region
•Primary amines give twopeaks
•Secondary amines give onepeak
•Tertiary amines give no peak
5/22/2020 21N
H
H
N
H
H
symmetric asymmetric
N-H3300 -3400 cm
-1

CH
3
CH
2
CH
2
CH
2
NH
2 NH
2
NH
2
scissor
CH
2
CH
3
PRIMARY AMINE
aliphatic
1-Butanamine
5/22/2020 22

NH
2
CH
3 NH
2
Ar-H
-CH
3
benzene
Ar-H
PRIMARY AMINE
aromatic
3-Methylbenzenamine
5/22/2020 23

NHCH
2
CH
3 NH
benzene
Ar-H
CH
3
SECONDARY AMINE
N -Ethylbenzenamine
5/22/2020 24

N
CH
3
CH
3 no N-H
benzene
CH
3
Ar-H
Ar-H
-CH
3
TERTIARY AMINE
N,N -Dimethylaniline
5/22/2020 25

C-H STRETCH
5/22/2020 26

Typical Infrared Absorption Regions
C-H
2.5 4 5 5.56.1 6.5 15.4
4000 2500 2000 180016501550 650
FREQUENCY (cm
-1
)
WAVELENGTH (mm)
O-HC-H
N-H
C=OC=N
Very
few
bands
C=C
C-Cl
C-O
C-N
C-CX=C=Y
(C,O,N,S)
C N
C C
N=O N=O*
We will look at
this area first
5/22/2020 27

•C-H aldehyde, two peaks (both weak)
~ 2850 and 2750 cm
-1
3000 divides
UNSATURATED
SATURATED
•C-H spstretch ~ 3300 cm
-1
•C-H sp
2
stretch > 3000 cm
-1
•C-H sp
3
stretch < 3000 cm
-1
The C-H stretching region
BASE VALUE = 3000 cm
-1
5/22/2020 28

3000
-C-H=C-H
31003300
=C-H=
2900 2850 2750
-CH=O
(weak)
increasing CH Bond Strength
sp
3
-1ssp
2
-1ssp-1s
increasing frequency (cm
-1
)
aldehyde
increasing s character in bond
increasing force constant K
STRONGERBONDSHAVELARGERFORCECONSTANTS
ANDABSORBATHIGHERFREQUENCIES
CH BASE VALUE = 3000 cm
-1
5/22/2020 29

Hexane
5/22/2020 30CH
3
CH
2
CH
2
CH
2
CH
2
CH
3
CH
stretching
vibrations
ALKANE
includes
CH
3
sym and asym
CH
2
sym and asym
CH bending vibrations
discussed shortly

C-H BENDING
5/22/2020 31

•CH
2 bending ~ 1465 cm
-1
•CH
3bending (asym) appears near
the CH
2value ~ 1460 cm
-1
•CH
3bending (sym) ~ 1375 cm
-1
5/22/2020 32
THE C-H BENDING REGION

C
H
H
C
H
H
C
H
H
C
H
H
C
HH
C
HH Scissoring Wagging
Rocking Twisting
Bending
Vibrations
~1465 cm
-1
~720 cm
-1
~1250 cm
-1
~1250 cm
-1
in-plane out-of-plane
METHYLENE GROUP BENDING VIBRATIONS
5/22/2020 33

CH
3CH
2
14651460 1375
asym sym
METHYLENE AND METHYL BENDING VIBRATIONS
these two peaks
frequently overlap
and are not resolved
C-H Bending, look near
1465 and 1375 cm
-1C
H
H
H
5/22/2020 34

CH
3CH
2
14651460 1375
asym sym
13701380
13701390C
CH3
CH
3 CCH
3
CH
3
CH
3 CCH3
METHYLENE AND METHYL BENDING VIBRATIONS
geminal dimethyl
t-butyl
(isopropyl)
two peaks
two peaks
The symmethyl peak
splits when you have
more than one CH
3
attached to a carbon.
ADDITIONAL DETAILS FOR SYM CH
3
one peak
5/22/2020 35

Hexane
5/22/2020 36CH
3
CH
2
CH
2
CH
2
CH
2
CH
3
CH
stretch
CH
2
bend
CH
3
bend
CH
2
rocking
ALKANE

1-Hexene
5/22/2020 37CH
2
CHCH
2
CH
2
CH
2
CH
3
=CH
CH
C=C CH
2
CH
3
bend
CH
ALKENE

Toluene
5/22/2020 38CH
3
C=C
benzene
CH
3
Ar-H
Ar-H
AROMATIC

1-Hexyne
5/22/2020 39CH CCH
2
CH
2
CH
2
CH
3
C=C=
=C-H=
C-H
CH
2, CH
3
ALKYNE

C
10H
22
C
12H
26
Similar
But Not
Identical
Fingerprinting
5/22/2020 40

C N AND C C STRETCH
5/22/2020 41

Typical Infrared Absorption
Regions
C=N
C=C
=
=
2.5 4 5 5.56.1 6.5 15.4
4000 2500 2000 180016501550 650
FREQUENCY (cm
-1
)
WAVELENGTH (mm)
O-HC-H
N-H
C=OC=N
Very
few
bands
C=C
C-Cl
C-O
C-N
C-CX=C=Y
(C,O,N,S)
C N
C C
N=O N=O*
5/22/2020 42

The triple bond stretching region
•C N2250 cm
-1
•C C2150 cm
-1
5/22/2020 43
=
=
The cyano group often gives a strong, sharp peak
due to its large dipole moment.
The carbon-carbon triple bond gives a sharp peak,
but it is often weak due to a lack of a dipole. This is
especially true if it is at the center of a symmetric
molecule. RCCR

Propanenitrile
5/22/2020 44CH
3
CH
2
CN
C=N=
NITRILE
BASE = 2250

1-Hexyne
5/22/2020 45CH CCH
2
CH
2
CH
2
CH
3
C=C=
=C-H=
ALKYNE
BASE = 2150

C=O STRETCHING
5/22/2020 46

Typical Infrared Absorption
Regions
C=O
2.5 4 5 5.56.1 6.5 15.4
4000 2500 2000 180016501550 650
FREQUENCY (cm
-1
)
WAVELENGTH (mm)
O-HC-H
N-H
C=OC=N
Very
few
bands
C=C
C-Cl
C-O
C-N
C-CX=C=Y
(C,O,N,S)
C N
C C
N=O N=O*
5/22/2020 47

This region stretches from about 1800 to 1650
cm
-1
-RIGHT IN THE MIDDLE OF THE SPECTRUM
The base value is 1715 cm
-1
(ketone)
The bands are very strong !!! due to the large
C=O dipole moment.
5/22/2020 48
C=O is often one of the strongest peaks in
the spectrum
THE CARBONYL STRETCHING REGION

2-ButanoneCH
3
CCH
2
CH
3
O
KETONE
C=O
C-H
overtone
2x C=O
CH bend
BASE = 1715
1715
C=O
5/22/2020 49

CR
O
H
CR
O
O
CR
O
CR
O
Cl
CR
O
OR'
CR
O
R
CR
O
NH
2
CR
O
OH 169017101715172517351800
1810 and 1760
BASE
VALUE
acid
chloride esteraldehyde
carboxylic
acid amideketone
anhydride
( two peaks )
EACH DIFFERENT KIND OF C=O COMES AT A DIFFERENT FREQUENCY
C=O IS SENSITIVE TO ITS ENVIRONMENT
THESE VALUES ARE
WORTH LEARNING
all are +/-10 cm
-1
5/22/2020 50

1.225 A 1.231 A 1.235 A 1.248 A
acid
chloride
ester ketone amide
C=O BOND LENGTHS IN CARBONYL COMPOUNDS
shorter longer
1780 cm
-1
1735 cm
-1
1715 cm
-1
1680 cm
-1
5/22/2020 51

Ketonesare at lower frequency than Aldehydesbecause of
the second electron-donating alkyl group.
Acid chloridesare at higher frequency than ketones because
of the electron-withdrawing halide.
Estersareathigherfrequenciesthanketonesduetothe
electron-withdrawingoxygenatom.Thisismoreimportantthan
resonancewiththeelectronpairontheoxygen.
Amides areatlowerfrequenciesthanketonesdueto
resonanceinvolvingtheunsharedpaironnitrogen.Theelectron-
withdrawingeffectofnitrogenislessimportantthanthe
resonance.
SUMMARY
Notetheelectronegativitydifference,OversusN,weightsthe
twofactors(resonance/e-withdrawal)differentlyinesters
thaninamides.
Acidsare at lower frequency than ketones due to H-bonding.
5/22/2020 52

CH
3
CCH
2
CH
3
O KETONE
C=O
C-H
overtone
CH bend
BASE = 1715
2-Butanone
5/22/2020 53
1719 x 2 = 3438
overtone of strong C=O peak
3438

CH
3
CH
2
CH
2
CH
2
CH
2
CH
2
CH
2
CH
2
CH
O ALDEHYDE
C=O
CHO
CH bend
BASE = 1725
Nonanal
5/22/2020 54
3460

C
Cl
O
CH
3
(CH
2
)
10 ACID CHLORIDE
C=O
C-H
CH bend
BASE = 1800
Dodecanoyl Chloride
5/22/2020 55
3608

C
O
O
CH
2
CH
2
CH
3
CH
2
CH
3 ESTER
C=O
C-O
C-H
BASE = 1735
Ethyl Butanoate
5/22/2020 56
3482

C
OH
O
CHCH
3
CH
3 CARBOXYLIC ACID
C=O
O-H
C-H
C-O
BASE = 1710
2-Methylpropanoic Acid
5/22/2020 57

C
O
OH
R
C
O
OH
R CARBOXYLIC ACID DIMER
Strong hydrogen-bonding in the dimer weakens the O-H and
C=O bonds and leads to broad peaks at lower frequencies.
lowers
frequency
of C=O
and also
of O-H
RECALL
5/22/2020 58

C
NH
2
O
CH
2
CH
3 AMIDE
C=O
NH
2
C-H
CH bend
BASE = 1690two peaks
sym / asymPropanamide
5/22/2020 59

C=C STRETCHING
ALKENES
AROMATICS
5/22/2020 60

Typical Infrared Absorption
Regions
C=C
2.5 4 5 5.56.1 6.5 15.4
4000 2500 2000 180016501550 650
FREQUENCY (cm
-1
)
WAVELENGTH (mm)
O-HC-H
N-H
C=OC=N
Very
few
bands
C=C
C-Cl
C-O
C-N
C-CX=C=Y
(C,O,N,S)
C N
C C
N=O N=O*
5/22/2020 61

The C=C stretching region
C=C double bond at 1650 cm
-1
is often weak or not
even seen.
C=C benzene ring shows peak(s) near 1600 and 1400
cm
-1
, one or two at each value -CONJUGATION LOWERS
THE VALUE.
When C=C is conjugated with C=O it is stronger and
comes at a lower frequency.
5/22/2020 62

1-Hexene
5/22/2020 63CH
2
CHCH
2
CH
2
CH
2
CH
3
ALKENE
oops
C=C=C-H
C-H
aliphatic
C-H
bend

Toluene
5/22/2020 64CH
3
AROMATIC
benzene
oops
benzene
C-H
C=C

Typical Infrared Absorption
Regions
C-O
2.5 4 5 5.56.1 6.5 15.4
4000 2500 2000 180016501550 650
FREQUENCY (cm
-1
)
WAVELENGTH (mm)
O-HC-H
N-H
C=OC=N
Very
few
bands
C=C
C-Cl
C-O
C-N
C-CX=C=Y
(C,O,N,S)
C N
C C
N=O N=O*
5/22/2020 65

C-OSTRETCHING
5/22/2020 66

The C-Ostretching region
The C-Oband appears in the range of
1300 to 1000 cm
-1
Look for one or more strong bands
appearing in this range!
Ethers, alcohols, esters and carboxylic
acids have C-Obands
5/22/2020 67

CH
3
CH
2
CH
2
CH
2
OCH
2
CH
2
CH
2
CH
3 ETHER
C-O
BASE = 1100
CH
2CH
3
bending
C-H
Dibutyl Ether
5/22/2020 68

OCH
3 AROMATIC ETHER
benzene
oops
C-O
C-H
aromatic
BASE = 1100
Anisole
5/22/2020 69

OH ALCOHOL
BASE = 3600
BASE = 1100
OH
C-O
CH
2
bend
C-H
Cyclohexanol
5/22/2020 70

C
OH
O
CHCH
3
CH
3 CARBOXYLIC ACID
OH
CH
C=O
C-O
2-Methylpropanoic Acid
5/22/2020 71

C
O
O
CH
2
CH
2
CH
3
CH
2
CH
3 ESTER
CH
C=O
C-O
Ethyl Butanoate
5/22/2020 72

N=OSTRETCHING
5/22/2020 73

Typical Infrared Absorption
Regions
N-O
2.5 4 5 5.56.1 6.5 15.4
4000 2500 2000 180016501550 650
FREQUENCY (cm
-1
)
WAVELENGTH (mm)
O-HC-H
N-H
C=OC=N
Very
few
bands
C=C
C-Cl
C-O
C-N
C-CX=C=Y
(C,O,N,S)
C N
C C
N=O N=O*
5/22/2020 74

The N=Ostretching region
•N=Ostretching --1550 and 1350 cm
-1
asymmetric and symmetric stretchings
•Often the 1550 cm
-1
peak is stronger than
the other one
5/22/2020 75

CH
3
CH
CH
3
NO
2 NITROALKANE
N=O
N=O
C-H
gem-dimethyl
2-Nitropropane
5/22/2020 76

Typical Infrared Absorption
Regions
C-Cl
2.5 4 5 5.56.1 6.5 15.4
4000 2500 2000 180016501550 650
FREQUENCY (cm
-1
)
WAVELENGTH (mm)
O-HC-H
N-H
C=OC=N
Very
few
bands
C=C
C-Cl
C-O
C-N
C-CX=C=Y
(C,O,N,S)
C N
C C
N=O N=O*
5/22/2020 77

The C-X stretching region
C-Cl785 to 540 cm
-1
,
often hard to find amongst the fingerprint bands!!
C-Brand C-I
appear outside the useful range of infrared
spectroscopy.
C-Fbonds can be found easily, but are not that
common.
5/22/2020 78

CCl Cl
Cl
Cl Often used as a solvent for IR spectra.
When it is used, spectra show C-Clabsorptions.
C-Cl
Carbon Tetrachloride
5/22/2020 79

Cl C-Cl
oops
benzene
C=C
benzene ring
combination
bands
Chlorobenzene
5/22/2020 80

=C-H OUT OF PLANE BENDING
5/22/2020 81

H
H
H
OUT-OF-PLANE BENDING
above
below
PLANE
(OOPS)
H
ALKENES
BENZENES
also with
5/22/2020 82

Monosubstituted
cis-1,2-
trans-1,2-
1,1-
Trisubstituted
TetrasubstitutedCC
H
R H
H
CC
H
R R
H
CC
R
H R
H
CC
R
R R
R
CC
R
R R
H
CC
R
R H
H
Disubstituted
10 11 12 13 14 15
1000 900 800 700cm
-1
s s
m
s
s
s
m
=C-H OUT OF PLANE BENDING
ALKENES
5/22/2020 83

10 11 12 13 14 15
1000 900 800 700cm
-1
Monosubstituted
Disubstituted
ortho
meta
para
Trisubstituted
1,2,4
1,2,3
1,3,5
BENZENES
m
s s
s
s s
s
s
s
s
m
m
m
m
OOPS
RING H’s
combination bands
5/22/2020 84

5/22/2020 85

5/22/2020 86
Tags